تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Robert Hjalmar Mellin
المؤلف:
G Elfving
المصدر:
Hjalmar Mellin (Swedish), Normat 28
الجزء والصفحة:
...
1-3-2017
496
Died: 1933
Hjalmar Mellin, the son of a clergyman, was born in Liminka, northern Ostrobothnia, in Finland in 1854. He grew up and received his schooling in Hämeenlinna (about 100 km north of Helsinki) and undertook his university studies in Helsinki, where his teacher was the Swedish
mathematician Gösta Mittag-Leffler. In the autumn of 1881 Mellin defended his doctoral dissertation on algebraic functions of a single complex variable. He made two sojourns in Berlin in 1881 and 1882 to study under Kurt Weierstrass and in 1883-84 he returned to continue his studies with Mittag-Leffler in Stockholm.
Mellin was appointed as a docent at the University of Stockholm from 1884-91 but never actually gave any lectures. Also in 1884 he was appointed a senior lecturer in mathematics at the recently founded Polytechnic Institute which was later (in 1908) to become the Technical University of Finland. In 1901 Mellin withdrew his application for the vacant chair of mathematics at the University of Helsinki in favour of his illustrious (and younger) fellow countryman E Lindelöf (1870-1946). During the period 1904-07 Mellin was Director of the Polytechnic Institute and in 1908 he became the first professor of mathematics at the new university. He remained at the university for a total of 42 years, retiring in 1926 at the age of 72.
With regard to the ever-burning language question, Mellin was a fervent fennoman with an apparently fiery temperament. It must be recalled, at this juncture, that Finland had for a long time been part of the kingdom of Sweden and had consequently been subjected to its language and culture. (After the Napoleonic wars Finland became an autonomous Grand Duchy under Russia, to finally emerge as an independent republic in the aftermath of the First World War.)
Mellin was one of the founders of the Finnish Academy of Sciences in 1908 as a purely Finnish alternative to the predominantly Swedish-speaking Society of Sciences. From 1908 until his death in 1933, at the age of 79, he represented his country on the editorial board of Acta Mathematica.
Mellin's research work was principally in the area of the theory of functions which resulted from the influence of his teachers Mittag-Leffler and Weierstrass. He studied the transform which now bears his name and established its reciprocal properties. He applied this technique systematically in a long series of papers to the study of the gamma function, hypergeometric functions, Dirichlet series, the Riemann zeta function and related number-theoretic functions. He also extended his transform to several variables and applied it to the solution of partial differential equations. The use of the inverse form of the transform, expressed as an integral parallel to the imaginary axis of the variable of integration, was developed by Mellin as a powerful tool for the generation of asymptotic expansions. In this theory, he included the possibility of high-order poles (thereby leading to the inclusion of logarithmic terms in the expansion) and to several sequences of poles yielding sums of asymptotic expansions of very general form.
During the last decade of his life Mellin was, rather curiously for an analyst, preoccupied by Einstein's theory of relativity and he wrote no less than ten papers on this topic. In these papers, where he was largely concerned with general philosophical problems of time and space, he adopted a quixotic standpoint in his attempt to refute the theory as being logically untenable.
Articles: