تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Bernard Frenicle de Bessy
المؤلف:
H L L Busard
المصدر:
Biography in Dictionary of Scientific Biography
الجزء والصفحة:
...
18-1-2016
1230
Born: 1605 in Paris, France
Died: 17 January 1675 in Paris, France
Frenicle de Bessy was an excellent amateur mathematician who held an official position as counsellor at the Court of Monnais in Paris.
He corresponded with Descartes, Fermat, Huygens and Mersenne. Most of the correspondence between these men and Frenicle de Bessy was on number theory but not exclusively so. He does comment on applied mathematical problems such as the trajectory of a body which falls from a starting position with an initial horizontal component. In a letter which he wrote at Dover in England to Mersenne on 7 June 1634, Frenicle describes an experiment to study the trajectory of a body released from the top of the mast of a moving ship. The data which he presents in the letter is quite accurate. Again on a more applied mathematical topic, Frenicle wrote an article which makes comments on Galileo's Dialogue.
Frenicle de Bessy is best known, however, for his contributions to number theory. He solved many of the problems posed by Fermat introducing new ideas and posing further questions. We shall look at some of the problems which were typical of those he worked on.
On 3 January 1657 Fermat made a challenge to the mathematicians of Europe and England. He posed two problems (in words rather than using notation as we shall do) involving S(n), the sum of the proper divisors of n:
1. Find a cube n such that n + S(n) is a square.
2. Find a square n such that n + S(n) is a cube.
We know that Frenicle found four solutions to the first of these problems on the day that he was given the problem, and found another six solutions the next day. He gave solutions to both problems in Solutio duorm problematum ... (1657). In this work he posed some problems of his own, including the following:
Find an integer n such that S(n) = 5n, and S(5n) = 25n.
Find an integer n such that S(n) = 7n, and S(7n) = 49n.
Find n such that n3 - (n-1)3 is a cube.
Frenicle solved other problems posed by Fermat. For example he showed that if a right angled triangle has sides integers a, b, c then its area bc/2 can never be a square. He also showed that the area of a right angled triangle is never twice a square.
Frenicle de Bessy also worked on magic squares and published Des quarrez ou tables magiques. He was elected to the Académie Royale des Sciences in 1666.
Articles: