النبات
مواضيع عامة في علم النبات
الجذور - السيقان - الأوراق
النباتات الوعائية واللاوعائية
البذور (مغطاة البذور - عاريات البذور)
الطحالب
النباتات الطبية
الحيوان
مواضيع عامة في علم الحيوان
علم التشريح
التنوع الإحيائي
البايلوجيا الخلوية
الأحياء المجهرية
البكتيريا
الفطريات
الطفيليات
الفايروسات
علم الأمراض
الاورام
الامراض الوراثية
الامراض المناعية
الامراض المدارية
اضطرابات الدورة الدموية
مواضيع عامة في علم الامراض
الحشرات
التقانة الإحيائية
مواضيع عامة في التقانة الإحيائية
التقنية الحيوية المكروبية
التقنية الحيوية والميكروبات
الفعاليات الحيوية
وراثة الاحياء المجهرية
تصنيف الاحياء المجهرية
الاحياء المجهرية في الطبيعة
أيض الاجهاد
التقنية الحيوية والبيئة
التقنية الحيوية والطب
التقنية الحيوية والزراعة
التقنية الحيوية والصناعة
التقنية الحيوية والطاقة
البحار والطحالب الصغيرة
عزل البروتين
هندسة الجينات
التقنية الحياتية النانوية
مفاهيم التقنية الحيوية النانوية
التراكيب النانوية والمجاهر المستخدمة في رؤيتها
تصنيع وتخليق المواد النانوية
تطبيقات التقنية النانوية والحيوية النانوية
الرقائق والمتحسسات الحيوية
المصفوفات المجهرية وحاسوب الدنا
اللقاحات
البيئة والتلوث
علم الأجنة
اعضاء التكاثر وتشكل الاعراس
الاخصاب
التشطر
العصيبة وتشكل الجسيدات
تشكل اللواحق الجنينية
تكون المعيدة وظهور الطبقات الجنينية
مقدمة لعلم الاجنة
الأحياء الجزيئي
مواضيع عامة في الاحياء الجزيئي
علم وظائف الأعضاء
الغدد
مواضيع عامة في الغدد
الغدد الصم و هرموناتها
الجسم تحت السريري
الغدة النخامية
الغدة الكظرية
الغدة التناسلية
الغدة الدرقية والجار الدرقية
الغدة البنكرياسية
الغدة الصنوبرية
مواضيع عامة في علم وظائف الاعضاء
الخلية الحيوانية
الجهاز العصبي
أعضاء الحس
الجهاز العضلي
السوائل الجسمية
الجهاز الدوري والليمف
الجهاز التنفسي
الجهاز الهضمي
الجهاز البولي
المضادات الحيوية
مواضيع عامة في المضادات الحيوية
مضادات البكتيريا
مضادات الفطريات
مضادات الطفيليات
مضادات الفايروسات
علم الخلية
الوراثة
الأحياء العامة
المناعة
التحليلات المرضية
الكيمياء الحيوية
مواضيع متنوعة أخرى
الانزيمات
How Cells Swim
المؤلف:
Robert Schleif
المصدر:
Genetics and Molecular Biology
الجزء والصفحة:
2nd Edition , p625-627
2025-08-28
43
Escherichia coli propels itself through liquid by rotating its flagella. Normally the flagella are left-handed helices and their rotation generates a thrust that moves the cell. In this section we consider the structure of flagella, how it’s known they rotate, how the rotation is created, and how the several flagella present on a single cell can function together.
Flagella are too thin to be easily seen by ordinary light microscopes, but they can be visualized with light microscopes operating in the dark-field mode, interference microscopes, video processing, or electron microscopes. Careful isolation of flagella shows that they are attached to a hook-shaped structure connected to a set of rings that is embedded in the cell’s membranes. The rings have the appearance of a motor that rotates the flagella (Fig. 1). The hook is a flexible connector between the basal structure and the flagella. Such a universal joint is necessary because in E. coli the flagella sprout from random points on the cell’s surface and point in several different directions. A cell typically contains about six flagella. These must join together in a bundle in a way that permits each to rotate in response to its motor. The hook acts as a universal joint that permits the torque to be transmitted around a bend.
Fig1. The appearance of a flagellum at low magnification in the electron microscope and the structure of the basal body, the motor, at high magnification showing the rings and the membranes of the cell wall.
Because of the size of the flagella, indirect means must be used to demonstrate that they rotate. One simple experiment uses the observation that antibody against flagellin can block motility. More precisely, bivalent antibody blocks motility, but monovalent antibody does not (Fig. 2). This result can be understood if the flagella form a bundle and each flagellum rotates within this bundle. A bivalent antibody molecule can link different flagella and prevent their rotation, but if flagella waved or rotated as a group, bivalent antibodies would have an effect no different from monovalent antibodies.
Fig2. A bacterium with flagella sprouting from various locations bending via the hook portion and coming together in a bundle. The section taken at point A shows flagella rotating individually and their movement if the bundle waves as a whole.
The most graphic demonstration that flagella rotate is also the basis of many other important experiments on chemotaxis. Simon used one mutation to block flagellin synthesis and another to permit greater than usual growth of the hook. As the synthesis of flagella is sensitive to catabolite repression, growth of cells in glucose reduced the number of the resulting polyhooks from about six per cell to about one. These cells could be bound to a microscope slide by means of antihook antibody that had bound to the hook and nonspecifically bound to the glass as well (Fig. 3). Chemotactic cells immobilized in this way rotated at two to nine revolutions per second. This leads to the conclusion that the hook normally rotates, but when it was fastened to the microscope slide instead, the cell rotated. Nonmotile cells did not rotate. Of course, motile but nonchemotactic mutants did rotate because they can swim but do so in a nondirected fashion and are incapable of swimming up a gradient.
Fig3. Demonstration of the hook’s rotation. After attachment of the hook or a short flagellum to a cover slip, the cell rotates, and this can easily be observed.
The immobilization experiment shows that a single flagellum rotates and that the rotation is associated with chemotaxis. Dark-field micros copy has shown that the bundle of flagella on a cell is stable as long as the flagella rotate counterclockwise. If the flagella reverse their rotation, their left-helical structure compels the bundle to fly apart temporarily. Furthermore, if the reversal is sufficiently vigorous, the flagella snap into a right-helical conformation. This further ensures that the bundle of flagella disperses.
الاكثر قراءة في مواضيع عامة في الاحياء الجزيئي
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
