تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Bonaventura Francesco Cavalieri
المؤلف:
A Favaro
المصدر:
Bonaventura Cavalieri nello studio di Bologna
الجزء والصفحة:
...
26-10-2015
1604
Born: 1598 in Milan, Duchy of Milan, Habsburg Empire (now Italy)
Died: 30 November 1647 in Bologna, Papal States (now Italy)
Bonaventura Cavalieri joined the religious order Jesuati in Milan in 1615 while he was still a boy. In 1616 he transferred to the Jesuati monastery in Pisa. His interest in mathematics was stimulated by Euclid's works and after meeting Galileo, considered himself a disciple of the astronomer. The meeting with Galileo was set up by Cardinal Federico Borromeo who saw clearly the genius in Cavalieri while he was at the monastery in Milan.
In Pisa, Cavalieri was taught mathematics by Benedetto Castelli, a lecturer in mathematics at the University of Pisa. He taught Cavalieri geometry and he showed such promise that Cavalieri sometimes took over Castelli's lectures at the university.
Cavalieri applied for the chair of mathematics in Bologna in 1619 but was not successful since he was considered too young for a position of this seniority. He also failed to get the chair of mathematics at Pisa when Castelli left for Rome.
In 1621 Cavalieri became a deacon and assistant to Cardinal Federico Borromeo at the monastery in Milan. He taught theology there until 1623 when he became prior of St Peter's at Lodi. After three years at Lodi he went to the Jesuati monastery in Parma, where he was to spend another three years.
In 1629 Cavalieri was appointed to the chair of mathematics at Bologna but by this time he had already developed a method of indivisibles which became a factor in the development of the integral calculus.
Cavalieri's theory of indivisibles, presented in his Geometria indivisibilibus continuorum nova quadam ratione promota of 1635 was a development of Archimedes' method of exhaustion incorporating Kepler's theory of infinitesimally small geometric quantities. This theory allowed Cavalieri to find simply and rapidly the area and volume of various geometric figures.
The method of indivisibles was not put on a rigorous basis and his book was widely attacked. In reply Cavalieri improved his exposition publishing Exercitationes geometricae sex which became the main source for 17th Century mathematicians.
Cavalieri was also largely responsible for introducing logarithms as a computational tool in Italy through his book Directorium Generale Uranometricum. The tables of logarithms which he published included logarithms of trigonometric functions for use by astronomers.
Cavalieri also wrote on conic sections, trigonometry, optics, astronomy, and astrology. He developed a general rule for the focal length of lenses and described a reflecting telescope. He also worked on a number of problems of motion. He even published a number of books on astrology, one in 1639 and another, his last work, Trattato della ruota planetaria perpetua in 1646.
Cavalieri corresponded with many mathematicians including Galileo, Mersenne, Renieri, Rocca, Torricelli and Viviani. His correspondence with Galileo includes at least 112 letters. Galileo thought highly of him writing
few, if any, since Archimedes, have delved as far and as deep into the science of geometry.
Perhaps Cavalieri's most famous student was Stefano degli Angeli. He studied with Cavalieri at Bologna at a time when Cavalieri was quite old and suffering from arthritis. Angeli wrote many of the letters which Cavalieri sent to his fellow mathematicians during his time of study.
- E Carruccio, Biography in Dictionary of Scientific Biography (New York 1970-1990).
http://www.encyclopedia.com/doc/1G2-2830900824.html - Biography in Encyclopaedia Britannica.
http://www.britannica.com/eb/article-9021898/Bonaventura-Cavalieri
Books:
- A Favaro, Bonaventura Cavalieri nello studio di Bologna (Bologna, 1855).
- E Giusti, B. Cavalieri and the Theory of Indivisibles (1980).
- G Piola, La vie di Boneventura Cavalieri (Milan, 1844).
Articles:
- A Agostini, I baricentri di gravi non omogenei e la formola generale per il loro calcolo determinati da Bonaventura Cavalieri, Boll. Un. Mat. Ital. (2) 2 (1940), 147-171.
- K Anderson, Cavalieri's method of indivisibles, Archive for the History of Exact Sciences 31 (4) (1985), 291-367.
- P E Ariotti, Bonaventura Cavalieri, Marin Mersenne, and the reflecting telescope, Isis 66 (1975), 303-321.
- G Arrighi, La 'Geometria indivisibilibus continuorum' de Bonaventura Cavalieri nella ritrovata stesura del 1627, Physis - Riv. Internaz. Storia Sci. 15 (1973), 133-147.
- G Baroncelli, Bonaventura Cavalieri between mathematics and physics (Italian), in Geometry and atomism in the Galilean school (Florence, 1992), 67-101.
- C B Boyer, Cavalieri, limits and discarded infinitesimals, Scripta Math. 8 (1941), 79-91.
- G Cellini, Le dimostrazioni di Cavalieri del suo principio, Period. Mat. (4) 44 (1966), 85-105.
- G Cellini, Gli indivisibili nel pensiero matematico e filosofico di Bonaventura Cavalieri, Period. Mat. (4) 44 (1966), 1-21.
- G Cioffarelli, Bonaventura Cavalieri's 'Treatise on the sphere' in the editions of Urbano Daviso, Boll. Storia Sci. Mat. 7 (1) (1987), 3-59.
- A V Dorofeeva, Bonaventura Cavalieri (1598-1647) (Russian), Mat. v Shkole (6) (1985), i, 69.
- E Festa, La notion d''agrégat d'indivisibles' dans la constitution de la cinématique galiléenne : Cavalieri, Galilée, Torricelli, Rev. Histoire Sci. 45 (2-3) (1992), 307-336.
- F De Gandt, Cavalieri's indivisibles and Euclid's canons, in Revolution and continuity (Washington, DC, 1991), 157-182.
- Giovanna Baroncelli, Bonaventura Cavalieri tra matematica e fisica, in M Bucciantini and M Torrini, eds. Geometria e atomismo nella scuola galileiana (Firenze, 1992), 67-101.
- Ma R Massa, The method of indivisibles of Bonaventura Cavalieri (Catalan), Butl. Soc. Catalana Mat. (9) (1994), 68-100.
- A Moretto, Hegels Auseinandersetzung mit Cavalieri und ihre Bedeutung für seine Philosophie der Mathematik, in Konzepte des mathematisch Unendlichen im 19. Jahrhundert (Göttingen, 1990), 64-99.
- G Terregino, The second 'ratio' of Bonaventura Cavalieri (Italian), Archimede 39 (4) (1987), 209-213.
- G Terregino, On Cavalieri's principle (Italian), Archimede 32 (1-2) (1980), 59-65.
- E Ulivi, The sources of Bonaventura Cavalieri : the construction of conics until 'The burning-glass' (1632) (Italian), Boll. Storia Sci. Mat. 7 (1) (1987), 117-179.
- V Vita, Gli indivisibili curvi in Bonaventura Cavalieri (Italian), Archimede 24 (1-2) (1972), 16-24.
الاكثر قراءة في 1500to1599
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
