تاريخ الفيزياء
علماء الفيزياء
الفيزياء الكلاسيكية
الميكانيك
الديناميكا الحرارية
الكهربائية والمغناطيسية
الكهربائية
المغناطيسية
الكهرومغناطيسية
علم البصريات
تاريخ علم البصريات
الضوء
مواضيع عامة في علم البصريات
الصوت
الفيزياء الحديثة
النظرية النسبية
النظرية النسبية الخاصة
النظرية النسبية العامة
مواضيع عامة في النظرية النسبية
ميكانيكا الكم
الفيزياء الذرية
الفيزياء الجزيئية
الفيزياء النووية
مواضيع عامة في الفيزياء النووية
النشاط الاشعاعي
فيزياء الحالة الصلبة
الموصلات
أشباه الموصلات
العوازل
مواضيع عامة في الفيزياء الصلبة
فيزياء الجوامد
الليزر
أنواع الليزر
بعض تطبيقات الليزر
مواضيع عامة في الليزر
علم الفلك
تاريخ وعلماء علم الفلك
الثقوب السوداء
المجموعة الشمسية
الشمس
كوكب عطارد
كوكب الزهرة
كوكب الأرض
كوكب المريخ
كوكب المشتري
كوكب زحل
كوكب أورانوس
كوكب نبتون
كوكب بلوتو
القمر
كواكب ومواضيع اخرى
مواضيع عامة في علم الفلك
النجوم
البلازما
الألكترونيات
خواص المادة
الطاقة البديلة
الطاقة الشمسية
مواضيع عامة في الطاقة البديلة
المد والجزر
فيزياء الجسيمات
الفيزياء والعلوم الأخرى
الفيزياء الكيميائية
الفيزياء الرياضية
الفيزياء الحيوية
الفيزياء العامة
مواضيع عامة في الفيزياء
تجارب فيزيائية
مصطلحات وتعاريف فيزيائية
وحدات القياس الفيزيائية
طرائف الفيزياء
مواضيع اخرى
التخليق الباريوني
المؤلف:
بيتر كوز
المصدر:
علم الكونيات
الجزء والصفحة:
ص74 –75
2023-08-09
1240
من الجلي أن فكرة التناظر تلعب دورًا مهما في نظرية الجسيمات. على سبيل المثال، المعادلات التي تصف التفاعلات الكهرومغناطيسية تتسم بالتناظر حين يتعلق الأمر بالشحنة الكهربية. فإذا غيرنا كل الشحنات الموجبة إلى شحنات سالبة، والعكس، فإن معادلات ماكسويل التي تصف الكهرومغناطيسية ستظل صحيحة. بتعبير آخر، إن خيار تعيين شحنة سالبة للإلكترون وشحنة موجبة للبروتون هو خيار اعتباطي تمامًا؛ إذ كان من الممكن أن يصير الحال معكوسًا، ولن يُحدث هذا أي اختلاف في النظرية. هذا التناظر يُترجم إلى قانون لحفظ الشحنة؛ فالشحنة الكهربية لا تفنى ولا تستحدث من العدم. يبدو من المنطقي ألا يكون لكوننا أي شحنة كهربية صافية؛ فينبغي وجود مقدار من الشحنة الموجبة مماثل لمقدار الشحنة السالبة، وبذا يُتوقع أن تساوي محصلة الشحنة الصافية صفرًا. ويبدو أن هذا هو الحال بالفعل.
أيضًا يبدو أن قوانين الفيزياء تعجز عن التفرقة بين المادة والمادة المضادة. لكننا نعلم أن المادة العادية أكثر شيوعًا بكثير من المادة المضادة. وتحديدًا، نحن نعلم أن عدد الباريونات (البروتونات والنيوترونات) يفوق عدد الباريونات المضادة. في حقيقة الأمر تحمل الباريونات نوعًا إضافيًا من «الشحنة» يسمى العدد الباريوني. للكون رقم باريون صافٍ. ومثلما هو الحال بالنسبة إلى الشحنة الكهربية، قد يتوقع المرء أنه ينبغي أن يكون العدد الباريوني كمية محفوظة. ومن ثم إذا لم يكن العدد الباريوني يساوي صفرًا الآن، يبدو أنه لا مناص من أن نَخْلُص إلى أنه لم يكن يحمل القيمة صفرًا قط في أي وقت من الماضي. وقد حيرت مشكلة توليد عدم التناظر هذا – مشكلة التخلق الباريوني – العلماء العاملين على نظرية الانفجار العظيم لوقت ليس بقليل.
كان الفيزيائي الروسي أندريه ساخاروف أول من حدد (عام 1967) الظروف التي في ظلها يمكن أن يكون هناك بالفعل انعدام تناظر باريوني صافٍ، وأول من بين أن العدد الباريوني لا يلزم في واقع الأمر، أن يكون كمية محفوظة. وقد تمكن من أن يُنتج تفسيرًا وَفْقَهُ تكون قوانين الفيزياء بالفعل متناظرة باريونيا، وفي الأوقات المبكرة من عمر الكون لم يكن للكون رقم باريون صافٍ، لكن مع برودته ظهر تفضيل تدريجي للباريونات على الباريونات المضادة. كانت أعماله سابقة لعصرها؛ لأنها أُجريت قبل بناء أي نظرية موحدة لفيزياء الجسيمات بوقت طويل. وقد تمكن من اقتراح آلية يمكنها إنتاج موقف في الكون المبكر يكون فيه مقابل كل مليار باریون مضاد مليار وواحد باريون. وحين تتصادم الباريونات والباريونات المضادة، فإنها تفنى في لفحة من الإشعاع الكهرومغناطيسي. وفي نموذج سخاروف، من شأن أغلب الباريونات أن تقابل باريونات مضادة، وأن تفنى بهذه الصورة. وفي النهاية سيتبقى لدينا كون يحتوي الافَ الملايين من الفوتونات مقابل كل باريون ناج. وهذا هو واقع الحال في الكون بالفعل؛ إذ يحوي إشعاع الخلفية الميكروي الكوني مليارات الفوتونات مقابل كل باريون. وتفسير هذا الأمر يُعَدُّ مثالاً سارا على الارتباط بين فيزياء الجسيمات وعلم الكونيات، بَيْدَ أنه ليس أشد هذه الأمثلة إثارة على الإطلاق.