تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Discrete Set
المؤلف:
Krantz, S. G
المصدر:
"Discrete Sets and Isolated Points." §4.6.2 in Handbook of Complex Variables. Boston, MA: Birkhäuser
الجزء والصفحة:
pp. 63-64
20-7-2021
1849
A set is discrete in a larger topological space
if every point
has a neighborhood
such that
{x}" src="https://mathworld.wolfram.com/images/equations/DiscreteSet/Inline5.gif" style="height:15px; width:71px" />. The points of
are then said to be isolated (Krantz 1999, p. 63). Typically, a discrete set is either finite or countably infinite. For example, the set of integers is discrete on the real line. Another example of an infinite discrete set is the set
{1/n for all integers n>1}" src="https://mathworld.wolfram.com/images/equations/DiscreteSet/Inline7.gif" style="height:15px; width:147px" />. On any reasonable space, a finite set is discrete. A set is discrete if it has the discrete topology, that is, if every subset is open.
In the case of a subset , as in the examples above, one uses the relative topology on
. Sometimes a discrete set is also closed. Then there cannot be any accumulation points of a discrete set. On a compact set such as the sphere, a closed discrete set must be finite because of this.
REFERENCES:
Krantz, S. G. "Discrete Sets and Isolated Points." §4.6.2 in Handbook of Complex Variables. Boston, MA: Birkhäuser, pp. 63-64, 1999.