1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : التبلوجيا :

Convex Function

المؤلف:  Eggleton, R. B. and Guy, R. K.

المصدر:  "Catalan Strikes Again! How Likely is a Function to be Convex?" Math. Mag. 61

الجزء والصفحة:  ...

18-7-2021

1546

Convex Function

ConvexFunction

A convex function is a continuous function whose value at the midpoint of every interval in its domain does not exceed the arithmetic mean of its values at the ends of the interval.

More generally, a function f(x) is convex on an interval [a,b] if for any two points x_1 and x_2 in [a,b] and any lambda where 0<lambda<1,

 f[lambdax_1+(1-lambda)x_2]<=lambdaf(x_1)+(1-lambda)f(x_2)

(Rudin 1976, p. 101; cf. Gradshteyn and Ryzhik 2000, p. 1132).

If f(x) has a second derivative in [a,b], then a necessary and sufficient condition for it to be convex on that interval is that the second derivative f^()(x)>=0 for all x in [a,b].

If the inequality above is strict for all x_1 and x_2, then f(x) is called strictly convex.

Examples of convex functions include x^p for p=1 or even p>=2xlnx for x>0, and |x| for all x. If the sign of the inequality is reversed, the function is called concave.


REFERENCES:

Eggleton, R. B. and Guy, R. K. "Catalan Strikes Again! How Likely is a Function to be Convex?" Math. Mag. 61, 211-219, 1988.

Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Series, and Products, 6th ed. San Diego, CA: Academic Press, p. 1132, 2000.

Rudin, W. Principles of Mathematical Analysis, 3rd ed. New York: McGraw-Hill, 1976.

Webster, R. Convexity. Oxford, England: Oxford University Press, 1995.

EN

تصفح الموقع بالشكل العمودي