تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Manifold Tangent Vector
المؤلف:
المرجع الالكتروني للمعلوماتيه
المصدر:
www.almerja.com
الجزء والصفحة:
...
26-5-2021
1937
Roughly speaking, a tangent vector is an infinitesimal displacement at a specific point on a manifold. The set of tangent vectors at a point forms a vector space called the tangent space at
, and the collection of tangent spaces on a manifold forms a vector bundle called the tangent bundle.
A tangent vector at a point on a manifold is a tangent vector at
in a coordinate chart. A change in coordinates near
causes an invertible linear map of the tangent vector's representations in the coordinates. This transformation is given by the Jacobian, which must be nonsingular in a change of coordinates. Hence the tangent vectors at
are well-defined. A vector field is an assignment of a tangent vector for each point. The collection of tangent vectors forms the tangent bundle, and a vector field is a section of this bundle.
Tangent vectors are used to do calculus on manifolds. Since manifolds are locally Euclidean, the usual notions of differentiation and integration make sense in any coordinate chart, and they can be carried over to manifolds. More specifically, a tangent vector is the manifold version of a directional derivative (at a point). An alternative analogy with calculus is the related notion of a velocity vector.
There are at least three different points of view on tangent vectors. Each has its own pluses and minuses. The extrinsic points of view use the vector space structure of Euclidean space. Thinking of a manifold as a submanifold of Euclidean space, a tangent vector can be thought of as an element in a tangent plane, or submanifold tangent space. In a coordinate chart, a tangent vector is a vector in a (chart) chart tangent space, which is just a copy of Euclidean space.
The problem with the extrinsic points of view is that they depend on a choice of embedding or coordinate chart. There are a couple of ways to think about a tangent vector intrinsically, as an element of an abstract intrinsic tangent space. These are more satisfying from an abstract point of view, but sometimes it is necessary to do calculations in coordinate charts.
It is important to distinguish tangent vectors at from tangent vectors at any other point
, although they may seem parallel. On a Lie group, there is a notion of parallelism, and there exist nonvanishing vector fields. In general, this is far from being true. On the sphere
, for instance, any smooth vector field must vanish somewhere.
A more intrinsic geometric definition of a tangent vector is to take a tangent vector at to be an equivalence class of paths through
which agree to first order. An extrinsic geometric definition, for a submanifold, is to view the tangent vectors as a subspace of the tangent vectors of the ambient space,
Algebraically, a vector field on a manifold is a derivation on the ring of smooth functions. That is, a vector field acts on smooth functions and satisfies the product rule. A vector field acts on a function by the directional derivative on the function,
![]() |
(1) |
It is more precise to say that the tangent bundle is the topological sheaf of derivations on the sheaf of smooth functions, in which case the tangent vectors at are in the stalk of the sheaf at
.
In fact, in coordinates , the notation for the standard basis of tangent vectors at 0 is
![]() |
(2) |
where the derivation of
is the usual partial derivative
![]() |
(3) |
Letting the base point vary in the coordinate chart, are vector fields, but are only defined in this coordinate chart.