تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Fiber Bundle
المؤلف:
المرجع الالكتروني للمعلوماتيه
المصدر:
www.almerja.com
الجزء والصفحة:
...
24-5-2021
2765
A fiber bundle (also called simply a bundle) with fiber is a map
where
is called the total space of the fiber bundle and
the base space of the fiber bundle. The main condition for the map to be a fiber bundle is that every point in the base space
has a neighborhood
such that
is homeomorphic to
in a special way. Namely, if
![]() |
is the homeomorphism, then
![]() |
where the map means projection onto the
component. The homeomorphisms
which "commute with projection" are called local trivializations for the fiber bundle
. In other words,
looks like the product
(at least locally), except that the fibers
for
may be a bit "twisted."
A fiber bundle is the most general kind of bundle. Special cases are often described by replacing the word "fiber" with a word that describes the fiber being used, e.g., vector bundles and principal bundles.
Examples of fiber bundles include any product (which is a bundle over
with fiber
), the Möbius strip (which is a fiber bundle over the circle with fiber given by the unit interval [0,1]; i.e., the base space is the circle), and
(which is a bundle over
with fiber
). A special class of fiber bundle is the vector bundle, in which the fiber is a vector space.
Some of the properties of graphs of functions carry over to fiber bundles. A graph of such a function sits in
as
. A graph always projects onto the base
and is one-to-one.
A fiber bundle is a total space and, like
, it has a projection
. The preimage,
, of any point
is isomorphic to
. Unlike
, there is no canonical projection from
to
. Instead, maps to
only make sense locally on
. Near any point
in the base
, there is a trivialization of
in which there are actual functions from a neighborhood to
.
These local functions can sometimes be patched together to give a (global) section such that the projection of
is the identity. This is analogous to the map from a domain
of a function
to its graph in
by
.
A fiber bundle also comes with a group action on the fiber. This group action represents the different ways the fiber can be viewed as equivalent. For instance, in topology, the group might be the group of homeomorphisms of the fiber. The group on a vector bundle is the group of invertible linear maps, which reflects the equivalent descriptions of a vector space using different vector bases.
Fiber bundles are not always used to generalize functions. Sometimes they are convenient descriptions of interesting manifolds. A common example in geometric topology is a torus bundle on the circle.