تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Universal Cover
المؤلف:
المرجع الالكتروني للمعلوماتيه
المصدر:
www.almerja.com
الجزء والصفحة:
...
21-5-2021
2517
The universal cover of a connected topological space is a simply connected space
with a map
that is a covering map. If
is simply connected, i.e., has a trivial fundamental group, then it is its own universal cover. For instance, the sphere
is its own universal cover. The universal cover is always unique and, under very mild assumptions, always exists. In fact, the universal cover of a topological space
exists iff the space
is connected, locally pathwise-connected, and semilocally simply connected.
Any property of can be lifted to its universal cover, as long as it is defined locally. Sometimes, the universal covers with special structures can be classified. For example, a Riemannian metric on
defines a metric on its universal cover. If the metric is flat, then its universal cover is Euclidean space. Another example is the complex structure of a Riemann surface
, which also lifts to its universal cover. By the uniformization theorem, the only possible universal covers for
are the open unit disk, the complex plane
, or the Riemann sphere
.
![]() |
![]() |
The above left diagram shows the universal cover of the torus, i.e., the plane. A fundamental domain, shaded orange, can be identified with the torus. The real projective plane is the set of lines through the origin, and its universal cover is the sphere, shown in the right figure above. The only nontrivial deck transformation is the antipodal map.
![]() |
![]() |
The compact Riemann surfaces with genuses are
-holed tori, and their universal covers are the unit disk. The figure above shows a hyperbolic regular octagon in the disk. With the colored edges identified, it is a fundamental domain for the double torus. Each hole has two loops, and cutting along each loop yields two edges per loop, or eight edges in total. Each loop is also shown in a different color, and arrows are drawn to provide instructions for lining them up. The fundamental domain is in gray and can be identified with the double torus illustrated below. The above animation shows some translations of the fundamental domain by deck transformations, which form a Fuchsian group. They tile the disk by analogy with the square tiling the plane for the square torus.
Although it is difficult to visualize a hyperbolic regular octagon in the disk as a cut-up double torus, the illustration above attempts to portray this. It is unfortunate that no hyperbolic compact manifold with constant negative curvature, can be embedded in . As a result, this picture is not isometric to the hyperbolic regular octagon. However, the generators for the fundamental group are drawn in the same colors, and are examples of so-called cuts of a Riemann surface.
Roughly speaking, the universal cover of a space is obtained by the following procedure. First, the space is cut open to make a simply connected space with edges, which then becomes a fundamental domain, as the double torus is cut to become a hyperbolic octagon or the square torus is cut open to become a square. Then a copy of the fundamental domain is added across an edge. The rule for adding a copy across an edge is that every point has to look the same as the original space, at least nearby. So the copies of the fundamental domain line up along edges which are identified in the original space, but more edges may also line up. Copies of the fundamental domain are added to the resulting space recursively, as long as there remains any edges. The result is a covering map with possibly infinitely many copies of a fundamental domain which is simply connected.
Any other covering map of is in turn covered by the universal cover of
,
. In this sense, the universal cover is the largest possible cover. In rigorous language, the universal cover has a universal property. If
is a covering map, then there exists a covering map
such that the composition of
and
is the projection from the universal cover to
.