تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Homotopy Type
المؤلف:
المرجع الالكتروني للمعلوماتيه
المصدر:
www.almerja.com
الجزء والصفحة:
...
13-5-2021
2202
A class formed by sets in which have essentially the same structure, regardless of size, shape and dimension. The "essential structure" is what a set keeps when it is transformed by compressing or dilating its parts, but without cutting or gluing. The most important feature that is preserved is the system of internal closed paths. In particular, the fundamental group remains unchanged. This object, however, only characterizes the loops, i.e., the paths which are essentially circular lines, whereas the homotopy type also refers to higher dimensional closed paths, which correspond to the boundaries of
-spheres. Hence the homotopy type yields a more precise classification of geometric objects. As for the circular paths, it makes no difference whether the object is located in the plane or on the surface of a sphere, so the fundamental group is the same in both cases.
The homotopy type, however, is different, since the plane does not contain any spherical path. In general, two closed paths in a set are compared by verifying if they can be reduced to the same geometric object in the set. A circular path on a surface can be reduced to any given point of the same surface by first contracting it to its center and the moving the center to the given point. The same is true for a spherical path in a solid. All closed paths in a square and in a cube are of the same kind as a point, hence a cube, a square and a point are of the same homotopy type.
In more general cases, however, holes and gaps can be obstructions to the transformations described above. A hollow sphere can be contracted to a spherical surface, but there is no way to reduce it further. The case of the cube, the square and the point shows that a homotopy type can include sets of different dimensions: hence its elements are not all homeomorphic, but are related in a more general way. According to the formal definition, two sets and
are of the same homotopy type if one can find two continuous maps
and
such that the map compositions
and
not necessarily are equal to the identity maps on
and
respectively, but are homotopic to them, i.e., they can be reduced to them by continuous deformations.