تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Normal Distribution Function
المؤلف:
Abramowitz, M. and Stegun, I. A.
المصدر:
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover,
الجزء والصفحة:
...
12-4-2021
3434
A normalized form of the cumulative normal distribution function giving the probability that a variate assumes a value in the range ,
![]() |
(1) |
It is related to the probability integral
![]() |
(2) |
by
![]() |
(3) |
Let so
. Then
![]() |
(4) |
Here, erf is a function sometimes called the error function. The probability that a normal variate assumes a value in the range is therefore given by
![]() |
(5) |
Neither nor erf can be expressed in terms of finite additions, subtractions, multiplications, and root extractions, and so must be either computed numerically or otherwise approximated.
Note that a function different from is sometimes defined as "the" normal distribution function
![]() |
![]() |
![]() |
(6) |
![]() |
![]() |
![]() |
(7) |
![]() |
![]() |
![]() |
(8) |
![]() |
![]() |
![]() |
(9) |
(Feller 1968; Beyer 1987, p. 551), although this function is less widely encountered than the usual . The notation
is due to Feller (1971).
The value of for which
falls within the interval
with a given probability
is a related quantity called the confidence interval.
For small values , a good approximation to
is obtained from the Maclaurin series for erf,
![]() |
(10) |
(OEIS A014481). For large values , a good approximation is obtained from the asymptotic series for erf,
![]() |
(11) |
(OEIS A001147).
The value of for intermediate
can be computed using the continued fraction identity
![]() |
(12) |
A simple approximation of which is good to two decimal places is given by
(13) |
Abramowitz and Stegun (1972) and Johnson et al. (1994) give other functional approximations. An approximation due to Bagby (1995) is
(14) |
The plots below show the differences between and the two approximations.
The value of giving
is known as the probable error of a normally distributed variate.
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 931-933, 1972.
Bagby, R. J. "Calculating Normal Probabilities." Amer. Math. Monthly 102, 46-49, 1995.
Beyer, W. H. (Ed.). CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, 1987.
Bryc, W. "A Uniform Approximation to the Right Normal Tail Integral." Math. Comput. 127, 365-374, 2002.
Feller, W. An Introduction to Probability Theory and Its Applications, Vol. 1, 3rd ed. New York: Wiley, 1968.
Feller, W. An Introduction to Probability Theory and Its Applications, Vol. 2, 3rd ed. New York: Wiley, p. 45, 1971.
Hastings, C. Approximations for Digital Computers. Princeton, NJ: Princeton University Press, 1955.
Johnson, N.; Kotz, S.; and Balakrishnan, N. Continuous Univariate Distributions, Vol. 1, 2nd ed. Boston, MA: Houghton Mifflin, 1994.
Patel, J. K. and Read, C. B. Handbook of the Normal Distribution. New York: Dekker, 1982.
Sloane, N. J. A. Sequences A001147/M3002 and A014481 in "The On-Line Encyclopedia of Integer Sequences."
Whittaker, E. T. and Robinson, G. "Normal Frequency Distribution." Ch. 8 in The Calculus of Observations: A Treatise on Numerical Mathematics, 4th ed. New York: Dover, pp. 164-208, 1967.