تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Gamma Distribution
المؤلف:
Beyer, W. H.
المصدر:
CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press
الجزء والصفحة:
...
6-4-2021
1402
Gamma Distribution
A gamma distribution is a general type of statistical distribution that is related to the beta distribution and arises naturally in processes for which the waiting times between Poisson distributed events are relevant. Gamma distributions have two free parameters, labeled and
, a few of which are illustrated above.
Consider the distribution function of waiting times until the
th Poisson event given a Poisson distribution with a rate of change
,
![]() |
![]() |
![]() |
(1) |
![]() |
![]() |
![]() |
(2) |
![]() |
![]() |
![]() |
(3) |
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
for , where
is a complete gamma function, and
an incomplete gamma function. With
an integer, this distribution is a special case known as the Erlang distribution.
The corresponding probability function of waiting times until the
th Poisson event is then obtained by differentiating
,
![]() |
![]() |
![]() |
(6) |
![]() |
![]() |
![]() |
(7) |
![]() |
![]() |
![]() |
(8) |
![]() |
![]() |
![]() |
(9) |
![]() |
![]() |
(10) |
|
![]() |
![]() |
(11) |
|
![]() |
![]() |
![]() |
(12) |
Now let (not necessarily an integer) and define
to be the time between changes. Then the above equation can be written
![]() |
(13) |
for . This is the probability function for the gamma distribution, and the corresponding distribution function is
![]() |
(14) |
where is a regularized gamma function.
It is implemented in the Wolfram Language as the function GammaDistribution[alpha, theta].
The characteristic function describing this distribution is
![]() |
![]() |
(15) |
|
![]() |
![]() |
![]() |
(16) |
where is the Fourier transform with parameters
, and the moment-generating function is
![]() |
![]() |
![]() |
(17) |
![]() |
![]() |
![]() |
(18) |
giving moments about 0 of
![]() |
(19) |
(Papoulis 1984, p. 147).
In order to explicitly find the moments of the distribution using the moment-generating function, let
![]() |
![]() |
![]() |
(20) |
![]() |
![]() |
![]() |
(21) |
so
![]() |
![]() |
![]() |
(22) |
![]() |
![]() |
![]() |
(23) |
![]() |
![]() |
![]() |
(24) |
giving the logarithmic moment-generating function as
![]() |
![]() |
![]() |
(25) |
![]() |
![]() |
![]() |
(26) |
![]() |
![]() |
![]() |
(27) |
The mean, variance, skewness, and kurtosis excess are then
![]() |
![]() |
![]() |
(28) |
![]() |
![]() |
![]() |
(29) |
![]() |
![]() |
![]() |
(30) |
![]() |
![]() |
![]() |
(31) |
The gamma distribution is closely related to other statistical distributions. If ,
, ...,
are independent random variates with a gamma distribution having parameters
,
, ...,
, then
is distributed as gamma with parameters
![]() |
![]() |
![]() |
(32) |
![]() |
![]() |
![]() |
(33) |
Also, if and
are independent random variates with a gamma distribution having parameters
and
, then
is a beta distribution variate with parameters
. Both can be derived as follows.
![]() |
(34) |
Let
![]() |
(35) |
![]() |
(36) |
then the Jacobian is
![]() |
(37) |
so
![]() |
(38) |
![]() |
![]() |
![]() |
(39) |
![]() |
![]() |
![]() |
(40) |
The sum therefore has the distribution
![]() |
(41) |
which is a gamma distribution, and the ratio has the distribution
![]() |
![]() |
![]() |
(42) |
![]() |
![]() |
![]() |
(43) |
![]() |
![]() |
![]() |
(44) |
where is the beta function, which is a beta distribution.
If and
are gamma variates with parameters
and
, the
is a variate with a beta prime distribution with parameters
and
. Let
![]() |
(45) |
then the Jacobian is
![]() |
(46) |
so
![]() |
(47) |
![]() |
![]() |
![]() |
(48) |
![]() |
![]() |
![]() |
(49) |
The ratio therefore has the distribution
![]() |
(50) |
which is a beta prime distribution with parameters .
The "standard form" of the gamma distribution is given by letting , so
and
![]() |
![]() |
![]() |
(51) |
![]() |
![]() |
![]() |
(52) |
![]() |
![]() |
![]() |
(53) |
so the moments about 0 are
![]() |
![]() |
![]() |
(54) |
![]() |
![]() |
![]() |
(55) |
![]() |
![]() |
![]() |
(56) |
where is the Pochhammer symbol. The moments about
are then
![]() |
![]() |
![]() |
(57) |
![]() |
![]() |
![]() |
(58) |
![]() |
![]() |
![]() |
(59) |
![]() |
![]() |
![]() |
(60) |
The moment-generating function is
![]() |
(61) |
and the cumulant-generating function is
![]() |
(62) |
so the cumulants are
![]() |
(63) |
If is a normal variate with mean
and standard deviation
, then
![]() |
(64) |
is a standard gamma variate with parameter .
REFERENCES:
Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, p. 534, 1987.
Jambunathan, M. V. "Some Properties of Beta and Gamma Distributions." Ann. Math. Stat. 25, 401-405, 1954.
Papoulis, A. Probability, Random Variables, and Stochastic Processes, 2nd ed. New York: McGraw-Hill, pp. 103-104, 1984.
الاكثر قراءة في الاحتمالات و الاحصاء
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
