

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي


الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية


الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق


الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات


الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل


المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات


التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات


علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان
Run
المؤلف:
Bloom, D. M.
المصدر:
"Probabilities of Clumps in a Binary Sequence (and How to Evaluate Them Without Knowing a Lot)." Math. Mag. 69
الجزء والصفحة:
...
31-3-2021
3456
Run
A run is a sequence of more than one consecutive identical outcomes, also known as a clump.
Let
be the probability that a run of
or more consecutive heads appears in
independent tosses of a coin (i.e.,
Bernoulli trials). This is equivalent to repeated picking from an urn containing two distinguishable objects with replacement after each pick. Let the probability of obtaining a head be
. Then there is a beautiful formula for
given in terms of the coefficients of the generating function
![]() |
(1) |
(Feller 1968, p. 300). Then
![]() |
(2) |
The following table gives the triangle of numbers
for
, 2, ... and
, 2, ...,
(OEIS A050227).
| Sloane | A000225 | A008466 | A050231 | A050233 | ||||
![]() |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 3 | 7 | 3 | 1 | 0 | 0 | 0 | 0 | 0 |
| 4 | 15 | 8 | 3 | 1 | 0 | 0 | 0 | 0 |
| 5 | 31 | 19 | 8 | 3 | 1 | 0 | 0 | 0 |
| 6 | 63 | 43 | 20 | 8 | 3 | 1 | 0 | 0 |
| 7 | 127 | 94 | 47 | 20 | 8 | 3 | 1 | 0 |
| 8 | 255 | 201 | 107 | 48 | 20 | 8 | 3 | 1 |
The special case
gives the sequence
![]() |
(3) |
where
is a Fibonacci number. Similarly, the probability that no
consecutive tails will occur in
tosses is given by
, where
is a Fibonacci k-step number.
Feller (1968, pp. 278-279) proved that for
,
![]() |
(4) |
where
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
(OEIS A086253) is the positive root of the above polynomial and
![]() |
![]() |
![]() |
(7) |
![]() |
![]() |
![]() |
(8) |
![]() |
![]() |
![]() |
(9) |
(OEIS A086254) is the positive root of the above polynomial. The corresponding constants for a run of
heads are
, the smallest positive root of
![]() |
(10) |
and
![]() |
(11) |
These are modified for unfair coins with
and
to
, the smallest positive root of
![]() |
(12) |
and
![]() |
(13) |
(Feller 1968, pp. 322-325).
Given
Bernoulli trials with a probability of success (heads)
, the expected number of tails is
, so the expected number of tail runs
is
. Continuing,
![]() |
(14) |
is the expected number of runs
. The longest expected run is therefore given by
![]() |
(15) |
(Gordon et al. 1986, Schilling 1990). Given
0s and
1s, the number of possible arrangements with
runs is
|
(16) |
for
an integer, where
is a binomial coefficient (Johnson and Kotz 1968, p. 268). Then
![]() |
(17) |
Now instead consider picking of
objects without replacement from a collection of
containing
indistinguishable objects of one type and
indistinguishable objects of another. Let
denote the number of permutations of these objects in which no
-run occurs. For example, there are 6 permutations of two objects of type
and two of type
. Of these,
,
,
, and
contain runs of length two, so
. In general, the probability that an
-run does occur is given by
![]() |
(18) |
where
is a binomial coefficient. Bloom (1996) gives the following recurrence sequence for
,
![]() |
(19) |
where
for
or
negative and
|
(20) |
Another recurrence which has only a fixed number of terms is given by
![]() |
(21) |
where
|
(22) |
(Goulden and Jackson 1983, Bloom 1996).
These formulas can be used to calculate the probability of obtaining a run of
cards of the same color in a deck of 52 cards. For
, 2, ..., this yields the sequence 1, 247959266474051/247959266474052, ... (OEIS A086439 and A086440). Normalizing by multiplying by
gives 495918532948104, 495918532948102, 495891608417946, 483007233529142, ... (OEIS A086438). The result
![]() |
(23) |
disproves the assertion of Gardner (1982) that "there will almost always be a clump of six or seven cards of the same color" in a normal deck of cards.
Bloom (1996) gives the expected number of noncontiguous
-runs (i.e., split the sequence into maximal clumps of the same value and count the number of such clumps of length
) in a sequence of
0s and
1s as
![]() |
(24) |
where
is the falling factorial. For
,
has an approximately normal distribution with mean and variance
![]() |
![]() |
![]() |
(25) |
![]() |
![]() |
![]() |
(26) |
REFERENCES:
Bloom, D. M. "Probabilities of Clumps in a Binary Sequence (and How to Evaluate Them Without Knowing a Lot)." Math. Mag. 69, 366-372, 1996.
Feller, W. An Introduction to Probability Theory and Its Application, Vol. 1, 3rd ed. New York: Wiley, 1968.
Finch, S. R. "Feller's Coin Tossing Constants." §5.11 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 339-342, 2003.
Gardner, M. Aha! Gotcha: Paradoxes to Puzzle and Delight. New York: W. H. Freeman, p. 124, 1982.
Godbole, A. P. "On Hypergeometric and Related Distributions of Order
." Commun. Stat.: Th. and Meth. 19, 1291-1301, 1990.
Godbole, A. P. and Papastavridis, G. (Eds.). Runs and Patterns in Probability: Selected Papers. New York: Kluwer, 1994.
Gordon, L.; Schilling, M. F.; and Waterman, M. S. "An Extreme Value Theory for Long Head Runs." Prob. Th. and Related Fields 72, 279-287, 1986.
Goulden, I. P. and Jackson, D. M. Combinatorial Enumeration. New York: Wiley, 1983.
Johnson, N. and Kotz, S. Discrete Distributions. New York: Wiley, 1968.
Mood, A. M. "The Distribution Theory of Runs." Ann. Math. Statistics 11, 367-392, 1940.
Philippou, A. N. and Makri, F. S. "Successes, Runs, and Longest Runs." Stat. Prob. Let. 4, 211-215, 1986.
Schilling, M. F. "The Longest Run of Heads." Coll. Math. J. 21, 196-207, 1990.
Schuster, E. F. In Runs and Patterns in Probability: Selected Papers (Ed. A. P. Godbole and S. Papastavridis). Boston, MA: Kluwer, pp. 91-111, 1994.
Sloane, N. J. A. Sequences A000225/M2655, A008466, A050227, A050231, A050232, A050233, A086253, A086254, A086438, A086439, and A086440 in "The On-Line Encyclopedia of Integer Sequences."
الاكثر قراءة في الاحتمالات و الاحصاء
اخر الاخبار
اخبار العتبة العباسية المقدسة
الآخبار الصحية


























![R=log_(1/p)[n(1-p)]](https://mathworld.wolfram.com/images/equations/Run/NumberedEquation10.gif)












قسم الشؤون الفكرية يصدر كتاباً يوثق تاريخ السدانة في العتبة العباسية المقدسة
"المهمة".. إصدار قصصي يوثّق القصص الفائزة في مسابقة فتوى الدفاع المقدسة للقصة القصيرة
(نوافذ).. إصدار أدبي يوثق القصص الفائزة في مسابقة الإمام العسكري (عليه السلام)