تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Quasirandom Sequence
المؤلف:
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T.
المصدر:
"Quasi- (that is, Sub-) Random Sequences." §7.7 in Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press
الجزء والصفحة:
pp. 299-306
21-3-2021
1968
A sequence of -tuples that fills n-space more uniformly than uncorrelated random points, sometimes also called a low-discrepancy sequence. Although the ordinary uniform random numbers and quasirandom sequences both produce uniformly distributed sequences, there is a big difference between the two. A uniform random generator on
will produce outputs so that each trial has the same probability of generating a point on equal subintervals, for example
and
. Therefore, it is possible for
trials to coincidentally all lie in the first half of the interval, while the
st point still falls within the other of the two halves with probability 1/2. This is not the case with the quasirandom sequences, in which the outputs are constrained by a low-discrepancy requirement that has a net effect of points being generated in a highly correlated manner (i.e., the next point "knows" where the previous points are).
Such a sequence is extremely useful in computational problems where numbers are computed on a grid, but it is not known in advance how fine the grid must be to obtain accurate results. Using a quasirandom sequence allows stopping at any point where convergence is observed, whereas the usual approach of halving the interval between subsequent computations requires a huge number of computations between stopping points.
REFERENCES:
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. "Quasi- (that is, Sub-) Random Sequences." §7.7 in Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, pp. 299-306, 1992.