1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : الاحتمالات و الاحصاء :

Gambler,s Ruin

المؤلف:  Cover, T. M.

المصدر:  "Gambler,s Ruin: A Random Walk on the Simplex." §5.4 in Open Problems in Communications and Computation. (Ed. T. M. Cover and B. Gopinath). New York: Springer-Verlag

الجزء والصفحة:  ...

9-3-2021

1617

Gambler's Ruin

Let two players each have a finite number of pennies (say, n_1 for player one and n_2 for player two). Now, flip one of the pennies (from either player), with each player having 50% probability of winning, and transfer a penny from the loser to the winner. Now repeat the process until one player has all the pennies.

If the process is repeated indefinitely, the probability that one of the two player will eventually lose all his pennies must be 100%. In fact, the chances P_1 and P_2 that players one and two, respectively, will be rendered penniless are

P_1 = (n_2)/(n_1+n_2)

(1)

P_2 = (n_1)/(n_1+n_2),

(2)

i.e., your chances of going bankrupt are equal to the ratio of pennies your opponent starts out to the total number of pennies.

Therefore, the player starting out with the smallest number of pennies has the greatest chance of going bankrupt. Even with equal odds, the longer you gamble, the greater the chance that the player starting out with the most pennies wins. Since casinos have more pennies than their individual patrons, this principle allows casinos to always come out ahead in the long run. And the common practice of playing games with odds skewed in favor of the house makes this outcome just that much quicker.


REFERENCES:

Cover, T. M. "Gambler's Ruin: A Random Walk on the Simplex." §5.4 in Open Problems in Communications and Computation. (Ed. T. M. Cover and B. Gopinath). New York: Springer-Verlag, p. 155, 1987.

Hajek, B. "Gambler's Ruin: A Random Walk on the Simplex." §6.3 in Open Problems in Communications and Computation. (Ed. T. M. Cover and B. Gopinath). New York: Springer-Verlag, pp. 204-207, 1987.

Kraitchik, M. "The Gambler's Ruin." §6.20 in Mathematical Recreations. New York: W. W. Norton, p. 140, 1942.

EN

تصفح الموقع بالشكل العمودي