تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Coin Tossing
المؤلف:
Berlekamp, E. R.; Conway, J. H; and Guy, R. K.
المصدر:
Winning Ways for Your Mathematical Plays, Vol. 1: Adding Games, 2nd ed. Wellesley, MA: A K Peters
الجزء والصفحة:
...
8-3-2021
3683
An idealized coin consists of a circular disk of zero thickness which, when thrown in the air and allowed to fall, will rest with either side face up ("heads" H or "tails" T) with equal probability. A coin is therefore a two-sided die. Despite slight differences between the sides and nonzero thickness of actual coins, the distribution of their tosses makes a good approximation to a Bernoulli distribution.
There are, however, some rather counterintuitive properties of coin tossing. For example, it is twice as likely that the triple TTH will be encountered before THT than after it, and three times as likely that THH will precede HHT. Furthermore, it is six times as likely that HTT will be the first of HTT, TTH, and TTT to occur than either of the others (Honsberger 1979). There are also strings of Hs and Ts that have the property that the expected wait
to see string
is less than the expected wait
to see
, but the probability of seeing
before seeing
is less than 1/2 (Gardner 1988, Berlekamp et al. 2001). Examples include
1. THTH and HTHH, for which and
, but for which the probability that THTH occurs before HTHH is 9/14 (Gardner 1988, p. 64),
2. ,
, but for which the probability that TTHH occurs before HHH is 7/12, and for which the probability that THHH occurs before HHH is 7/8 (Penney 1969; Gardner 1988, p. 66).
More amazingly still, spinning a penny instead of tossing it results in heads only about 30% of the time (Paulos 1995).
The study of runs of two or more identical tosses is well-developed, but a detailed treatment is surprisingly complicated given the simple nature of the underlying process. For example, the probability that no two consecutive tails will occur in tosses is given by
, where
is a Fibonacci number. Similarly, the probability that no
consecutive tails will occur in
tosses is given by
, where
is a Fibonacci k-step number.
Toss a fair coin over and over, record the sequence of heads and tails, and consider the number of tosses needed such that all possible sequences of heads and tails of length occur as subsequences of the tosses. The minimum number of tosses is
(Havil 2003, p. 116), giving the first few terms as 2, 5, 10, 19, 36, 69, 134, ... (OEIS A052944). The minimal sequences for
are HT and TH, and for
are HHTTH, HTTHH, THHTT, and TTHHT. The numbers of distinct minimal toss sequences for
, 2, ... are 2, 4, 16, 256, ... (OEIS A001146), which appear to simply be
.
It is conjectured that as becomes large, the average number of tosses needed to get all subsequences of length
is
, where
is the Euler-Mascheroni constant (Havil 2003, p. 116).
REFERENCES:
Berlekamp, E. R.; Conway, J. H; and Guy, R. K. Winning Ways for Your Mathematical Plays, Vol. 1: Adding Games, 2nd ed. Wellesley, MA: A K Peters, p. 777, 2001.
Ford, J. "How Random is a Coin Toss?" Physics Today 36, 40-47, 1983.
Gardner, M. "Nontransitive Paradoxes." Time Travel and Other Mathematical Bewilderments. New York: W. H. Freeman, pp. 64-66, 1988.
Havil, J. Gamma: Exploring Euler's Constant. Princeton, NJ: Princeton University Press, 2003.
Honsberger, R. "Some Surprises in Probability." Ch. 5 in Mathematical Plums (Ed. R. Honsberger). Washington, DC: Math. Assoc. Amer., pp. 100-103, 1979.
Keller, J. B. "The Probability of Heads." Amer. Math. Monthly 93, 191-197, 1986.
Paulos, J. A. A Mathematician Reads the Newspaper. New York: BasicBooks, p. 75, 1995.
Peterson, I. Islands of Truth: A Mathematical Mystery Cruise. New York: W. H. Freeman, pp. 238-239, 1990.
Penney, W. "Problem 95. Penney-Ante." J. Recr. Math. 2, 241, 1969.
Sloane, N. J. A. Sequences A000225/M2655, A001146/M1297, A050227, and A052944 in "The On-Line Encyclopedia of Integer Sequences."
Spencer, J. "Combinatorics by Coin Flipping." Coll. Math. J., 17, 407-412, 1986.
Whittaker, E. T. and Robinson, G. "The Frequency Distribution of Tosses of a Coin." §90 in The Calculus of Observations: A Treatise on Numerical Mathematics, 4th ed. New York: Dover, pp. 176-177, 1967.