1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية الاعداد :

Poulet Number

المؤلف:  Guy, R. K.

المصدر:  Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag

الجزء والصفحة:  ...

25-1-2021

847

Poulet Number

A Poulet number is a Fermat pseudoprime to base 2, denoted psp(2), i.e., a composite number n such that

 2^(n-1)=1 (mod n).

The first few Poulet numbers are 341, 561, 645, 1105, 1387, ... (OEIS A001567).

Pomerance et al. (1980) computed all 21853 Poulet numbers less than 25×10^9. The numbers less than 10^210^3, ..., are 0, 3, 22, 78, 245, ... (OEIS A055550).

Pomerance has shown that the number of Poulet numbers less than x for sufficiently large x satisfy

 exp[(lnx)^(5/14)]<P_2(x)<xexp(-(lnxlnlnlnx)/(2lnlnx))

(Guy 1994).

A Poulet number all of whose divisors d satisfy d|2^d-2 is called a super-Poulet number. There are an infinite number of Poulet numbers which are not super-Poulet numbers. Shanks (1993) calls any integer satisfying 2^(n-1)=1 (mod n) (i.e., not limited to odd composite numbers) a Fermatian.


REFERENCES:

Guy, R. K. Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 28-29, 1994.

Pinch, R. G. E. "The Pseudoprimes Up to 10^(13)." ftp://ftp.dpmms.cam.ac.uk/pub/PSP/.

Pomerance, C.; Selfridge, J. L.; and Wagstaff, S. S. Jr. "The Pseudoprimes to 25·10^9." Math. Comput. 35, 1003-1026, 1980. http://mpqs.free.fr/ThePseudoprimesTo25e9.pdf.

Shanks, D. Solved and Unsolved Problems in Number Theory, 4th ed. New York: Chelsea, pp. 115-117, 1993.

Sloane, N. J. A. Sequences A001567/M5441 and A055550 in "The On-Line Encyclopedia of Integer Sequences."

EN

تصفح الموقع بالشكل العمودي