

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي


الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية


الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق


الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات


الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل


المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات


التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات


علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان
Baillie-PSW Primality Test
المؤلف:
Gilchrist, J.
المصدر:
"Pseudoprime Enumeration with Probabilistic Primality Tests (Fermat Base 2, Baillie-PSW)." http://gilchrist.ca/jeff/factoring/pseudoprimes.html.
الجزء والصفحة:
...
23-1-2021
933
Baillie-PSW Primality Test
Baillie and Wagstaff (1980) and Pomerance et al. (1980, Pomerance 1984) proposed a test (or rather a related set of tests) based on a combination of strong pseudoprimes and Lucas pseudoprimes. There are a number of variants, one particular version of which is given by the following algorithm (Pomerance 1984):
1. Perform a base-2 strong pseudoprime test on
. If this test fails, declare
composite and halt. If this test success,
is probably prime. Proceed to step 2.
2. In the sequence 5,
, 9,
, 13, ..., find the first number
for which the Jacobi symbol
. Then perform a Lucas pseudoprime test with discriminant
on
. If this test fails, declare
composite. It if succeeds,
is very probably prime.
Pomerance (1984) originally offered a prize of $30 for discovery of a composite number which passes this test, but the dollar amount of the offer was subsequently raised to $620 (Guy 1994, p. 28).
No examples of composite numbers passing the test are known, and as of June 13, 2009, Jeff Gilchrist has confirmed that there are no Baillie-PSW pseudoprimes up to
. However, the elliptic curve primality proving program PRIMO checks all intermediate probable primes with this test, and if any were composite, the certification would necessarily have failed. Based on the fact that this has not occurred in three years of usage, PRIMO author M. Martin estimates that there is no composite less than about
digits that can fool this test.
REFERENCES:
Arnault, F. Ph.D. thesis, p. 72.
Baillie, R. and Wagstaff, S. W. Jr. "Lucas Pseudoprimes." Math. Comput. 35, 1391-1417, 1980. http://mpqs.free.fr/LucasPseudoprimes.pdf.
Gilchrist, J. "Pseudoprime Enumeration with Probabilistic Primality Tests (Fermat Base 2, Baillie-PSW)." http://gilchrist.ca/jeff/factoring/pseudoprimes.html.
Guy, R. K. "Pseudoprimes. Euler Pseudoprimes. Strong Pseudoprimes." §A12 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 27-30, 1994.
Martin, M. "Re: Baillie-PSW - Which variant is correct?" http://groups.google.com/groups?hl=en&lr=&ie=UTF-8&oe=UTF-8&safe=off&selm=3FFF275C.2C6B5185%40ellipsa.no.sp.am.net.
Martin, M. "PRIMO--Primality Proving." http://www.ellipsa.net.
Nicely, T. R. "The Baillie-PSW Primality Test." http://www.trnicely.net/misc/bpsw.html.
Pomerance, C. "Are There Counterexamples to the Baillie-PSW Primality Test?" 1984. http://www.pseudoprime.com/dopo.pdf.
Pomerance, C.; Selfridge, J. L.; and Wagstaff, S. S. Jr. "The Pseudoprimes to
." Math. Comput. 35, 1003-1026, 1980. http://mpqs.free.fr/ThePseudoprimesTo25e9.pdf.
الاكثر قراءة في نظرية الاعداد
اخر الاخبار
اخبار العتبة العباسية المقدسة
الآخبار الصحية

قسم الشؤون الفكرية يصدر كتاباً يوثق تاريخ السدانة في العتبة العباسية المقدسة
"المهمة".. إصدار قصصي يوثّق القصص الفائزة في مسابقة فتوى الدفاع المقدسة للقصة القصيرة
(نوافذ).. إصدار أدبي يوثق القصص الفائزة في مسابقة الإمام العسكري (عليه السلام)