1

x

هدف البحث

بحث في العناوين

بحث في اسماء الكتب

بحث في اسماء المؤلفين

اختر القسم

القرآن الكريم
الفقه واصوله
العقائد الاسلامية
سيرة الرسول وآله
علم الرجال والحديث
الأخلاق والأدعية
اللغة العربية وعلومها
الأدب العربي
الأسرة والمجتمع
التاريخ
الجغرافية
الادارة والاقتصاد
القانون
الزراعة
علم الفيزياء
علم الكيمياء
علم الأحياء
الرياضيات
الهندسة المدنية
الأعلام
اللغة الأنكليزية

موافق

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية الاعداد :

Triangular Number

المؤلف:  Ball, W. W. R. and Coxeter, H. S. M.

المصدر:  Mathematical Recreations and Essays, 13th ed. New York: Dover

الجزء والصفحة:  ...

22-12-2020

2000

Triangular Number

 TriangularNumber

The triangular number T_n is a figurate number that can be represented in the form of a triangular grid of points where the first row contains a single element and each subsequent row contains one more element than the previous one. This is illustrated above for T_1=1T_2=3, .... The triangular numbers are therefore 1, 1+21+2+31+2+3+4, ..., so for n=1, 2, ..., the first few are 1, 3, 6, 10, 15, 21, ... (OEIS A000217).

More formally, a triangular number is a number obtained by adding all positive integers less than or equal to a given positive integer n, i.e.,

T_n = sum_(k=1)^(n)k

(1)

= 1/2n(n+1)

(2)

= (n+1; 2),

(3)

where (n; k) is a binomial coefficient. As a result, the number of distinct wine glass clinks that can be made among a group of n people (which is simply (n; 2)) is given by the triangular number T_(n-1).

The triangular number T_n=n+(n-1)+...+2+1 is therefore the additive analog of the factorial n!=n·(n-1)...2·1.

Binary representation of the triangular numbers

A plot of the first few triangular numbers represented as a sequence of binary bits is shown above. The top portion shows T_1 to T_(255), and the bottom shows the next 510 values.

The odd triangular numbers are given by 1, 3, 15, 21, 45, 55, ... (OEIS A014493), while the even triangular numbers are 6, 10, 28, 36, 66, 78, ... (OEIS A014494).

T_4=10 gives the number and arrangement of the tetractys (which is also the arrangement of bowling pins), while T_5=15 gives the number and arrangement of balls in billiards. Triangular numbers satisfy the recurrence relation

 T_(n+1)^2-T_n^2=(n+1)^3,

(4)

as well as

T_n^2+T_(n-1)^2 = T_(n^2)

(5)

3T_n+T_(n-1) = T_(2n)

(6)

3T_n+T_(n+1) = T_(2n+1)

(7)

1+3+5+...+(2n-1) = T_n+T_(n-1).

(8)

TriangleSquare

In addition, the triangle numbers can be related to the square numbers by

(2n+1)^2 = 8T_n+1

(9)

= T_(n-1)+6T_n+T_(n+1)

(10)

(Conway and Guy 1996), as illustrated above (Wells 1991, p. 198).

The triangular numbers have the ordinary generating function

f(x) = x/((1-x)^3)

(11)

= x+3x^2+6x^3+10x^4+15x^5+...

(12)

and exponential generating function

g(x) = (1+2x+1/2x^2)e^x

(13)

= 1+3x+3x^2+5/3x^3+5/8x^4+...

(14)

= 1+3x/(1!)+6(x^2)/(2!)+10(x^3)/(3!)+15(x^4)/(4!)+...

(15)

(Sloane and Plouffe 1995, p. 9).

Every other triangular number T_n is a hexagonal number, with

 H_n=T_(2n-1).

(16)

In addition, every pentagonal number is 1/3 of a triangular number, with

 P_n=1/3T_(3n-1).

(17)

The sum of consecutive triangular numbers is a square number, since

T_r+T_(r-1) = 1/2r(r+1)+1/2(r-1)r

(18)

= 1/2r[(r+1)+(r-1)]

(19)

= r^2.

(20)

Interesting identities involving triangular, square, and cubic numbers are

sum_(k=1)^(2n-1)(-1)^(k+1)T_k = n^2

(21)

sum_(k=1)^(n)k^3 = T_n^2

(22)

= 1/4n^2(n+1)^2

(23)

sum_(k=1)^(n)(2k-1)^3 = T_(2n^2-1)

(24)

= n^2(2n^2-1).

(25)

Triangular numbers also unexpectedly appear in integrals involving the absolute value of the form

 int_0^1int_0^1|x-y|^ndxdy=2/((n+1)(n+2)).

(26)

All even perfect numbers are triangular T_p with prime p. Furthermore, every even perfect number P>6 is of the form

 P=1+9T_n=T_(3n+1),

(27)

where T_n is a triangular number with n=8j+2 (Eaton 1995, 1996). Therefore, the nested expression

 9(9...(9(9(9(9T_n+1)+1)+1)+1)...+1)+1

(28)

generates triangular numbers for any T_n. An integer k is a triangular number iff 8k+1 is a square number >1.

The numbers 1, 36, 1225, 41616, 1413721, 48024900, ... (OEIS A001110) are square triangular numbers, i.e., numbers which are simultaneously triangular and square (Pietenpol 1962). The corresponding square roots are 1, 6, 35, 204, 1189, 6930, ... (OEIS A001109), and the indices of the corresponding triangular numbers T_n are n=1, 8, 49, 288, 1681, ... (OEIS A001108).

Numbers which are simultaneously triangular and tetrahedral satisfy the binomial coefficient equation

 T_n=(n+1; 2)=(m+2; 3)=Te_m,

(29)

the only solutions of which are

Te_3=T_4 = 10

(30)

Te_8=T_(15) = 120

(31)

Te_(20)=T_(55) = 1540

(32)

Te_(34)=T_(119) = 7140

(33)

(Guy 1994, p. 147).

The following table gives triangular numbers T_p having prime indices p.

class Sloane sequence
T_n with prime indices A034953 3, 6, 15, 28, 66, 91, 153, 190, 276, 435, 496, ...
odd T_n with prime indices A034954 3, 15, 91, 153, 435, 703, 861, 1431, 1891, 2701, ...
even T_n with prime indices A034955 6, 28, 66, 190, 276, 496, 946, 1128, 1770, 2278, ...

The smallest of two integers for which n^3-13 is four times a triangular number is 5, as determined by Cesàro in 1886 (Le Lionnais 1983, p. 56). The only Fibonacci numbers which are triangular are 1, 3, 21, and 55 (Ming 1989), and the only Pell number which is triangular is 1 (McDaniel 1996). The beast number 666 is triangular, since

 T_(6·6)=T_(36)=666.

(34)

In fact, it is the largest repdigit triangular number (Bellew and Weger 1975-76).

The positive divisors of 4T(n)+1 are all of the form 4k+1, those of 6T(n)+1 are all of the form 6k+1, and those of 10T(n)+1 are all of the form 10k+/-1; that is, they end in the decimal digit 1 or 9.

Fermat's polygonal number theorem states that every positive integer is a sum of at most three triangular numbers, four square numbers, five pentagonal numbers, and n n-polygonal numbers. Gauss proved the triangular case (Wells 1986, p. 47), and noted the event in his diary on July 10, 1796, with the notation

 **EUpsilonRHKA    num=Delta+Delta+Delta.

(35)

This case is equivalent to the statement that every number of the form 8m+3 is a sum of three odd squares (Duke 1997). Dirichlet derived the number of ways in which an integer m can be expressed as the sum of three triangular numbers (Duke 1997). The result is particularly simple for a prime of the form 8m+3, in which case it is the number of squares mod 8m+3 minus the number of nonsquares mod 8m+3 in the interval from 1 to 4m+1 (Deligne 1973, Duke 1997).

The only triangular numbers which are the product of three consecutive integers are 6, 120, 210, 990, 185136, 258474216 (OEIS A001219; Guy 1994, p. 148).


REFERENCES:

Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recreations and Essays, 13th ed. New York: Dover, p. 59, 1987.

Bellew, D. W. and Weger, R. C. "Repdigit Triangular Numbers." J. Recr. Math. 8, 96-97, 1975-76.

Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, pp. 33-38, 1996.

Deligne, P. "La Conjecture de Weil." Inst. Hautes Études Sci. Pub. Math. 43, 273-308, 1973.

Dudeney, H. E. Amusements in Mathematics. New York: Dover, pp. 67 and 167, 1970.

Duke, W. "Some Old Problems and New Results about Quadratic Forms." Not. Amer. Math. Soc. 44, 190-196, 1997.

Eaton, C. F. "Problem 1482." Math. Mag. 68, 307, 1995.

Eaton, C. F. "Perfect Number in Terms of Triangular Numbers." Solution to Problem 1482. Math. Mag. 69, 308-309, 1996.

Guy, R. K. "Sums of Squares" and "Figurate Numbers." §C20 and §D3 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 136-138 and 147-150, 1994.

Hindin, H. "Stars, Hexes, Triangular Numbers and Pythagorean Triples." J. Recr. Math. 16, 191-193, 1983-1984.

Hobson, N. "Triangular Numbers." https://www.qbyte.org/puzzles/p149s.html#triangular.

Le Lionnais, F. Les nombres remarquables. Paris: Hermann, p. 56, 1983.

McDaniel, W. L. "Triangular Numbers in the Pell Sequence." Fib. Quart. 34, 105-107, 1996.

Ming, L. "On Triangular Fibonacci Numbers." Fib. Quart. 27, 98-108, 1989.

Pappas, T. "Triangular, Square & Pentagonal Numbers." The Joy of Mathematics. San Carlos, CA: Wide World Publ./Tetra, p. 214, 1989.

Pietenpol, J. L. "Square Triangular Numbers." Amer. Math. Monthly 169, 168-169, 1962.

Ram, R. "Triangle Numbers that are Perfect Squares." https://users.tellurian.net/hsejar/maths/triangle/.

Satyanarayana, U. V. "On the Representation of Numbers as the Sum of Triangular Numbers." Math. Gaz. 45, 40-43, 1961.

Sloane, N. J. A. Sequences A000217/M2535, A001108/M4536, A001109/M4217, A001110/M5259, A001219, A014493, A014494, A034953, A034955, and A034955 in "The On-Line Encyclopedia of Integer Sequences."

Sloane, N. J. A. and Plouffe, S. The Encyclopedia of Integer Sequences. San Diego, CA: Academic Press, 1995.

Trotter, T. Jr. "Some Identities for the Triangular Numbers." J. Recr. Math. 6, 128-135, 1973.

Wells, D. The Penguin Dictionary of Curious and Interesting Numbers. Middlesex, England: Penguin Books, pp. 47-48, 1986.

Wells, D. The Penguin Dictionary of Curious and Interesting Geometry. London: Penguin, p. 199, 1991.

EN

تصفح الموقع بالشكل العمودي