x
هدف البحث
بحث في العناوين
بحث في اسماء الكتب
بحث في اسماء المؤلفين
اختر القسم
موافق
تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Triangular Number
المؤلف: Ball, W. W. R. and Coxeter, H. S. M.
المصدر: Mathematical Recreations and Essays, 13th ed. New York: Dover
الجزء والصفحة: ...
22-12-2020
2000
The triangular number is a figurate number that can be represented in the form of a triangular grid of points where the first row contains a single element and each subsequent row contains one more element than the previous one. This is illustrated above for , , .... The triangular numbers are therefore 1, , , , ..., so for , 2, ..., the first few are 1, 3, 6, 10, 15, 21, ... (OEIS A000217).
More formally, a triangular number is a number obtained by adding all positive integers less than or equal to a given positive integer , i.e.,
(1) |
|||
(2) |
|||
(3) |
where is a binomial coefficient. As a result, the number of distinct wine glass clinks that can be made among a group of people (which is simply ) is given by the triangular number .
The triangular number is therefore the additive analog of the factorial .
A plot of the first few triangular numbers represented as a sequence of binary bits is shown above. The top portion shows to , and the bottom shows the next 510 values.
The odd triangular numbers are given by 1, 3, 15, 21, 45, 55, ... (OEIS A014493), while the even triangular numbers are 6, 10, 28, 36, 66, 78, ... (OEIS A014494).
gives the number and arrangement of the tetractys (which is also the arrangement of bowling pins), while gives the number and arrangement of balls in billiards. Triangular numbers satisfy the recurrence relation
(4) |
as well as
(5) |
|||
(6) |
|||
(7) |
|||
(8) |
In addition, the triangle numbers can be related to the square numbers by
(9) |
|||
(10) |
(Conway and Guy 1996), as illustrated above (Wells 1991, p. 198).
The triangular numbers have the ordinary generating function
(11) |
|||
(12) |
and exponential generating function
(13) |
|||
(14) |
|||
(15) |
(Sloane and Plouffe 1995, p. 9).
Every other triangular number is a hexagonal number, with
(16) |
In addition, every pentagonal number is 1/3 of a triangular number, with
(17) |
The sum of consecutive triangular numbers is a square number, since
(18) |
|||
(19) |
|||
(20) |
Interesting identities involving triangular, square, and cubic numbers are
(21) |
|||
(22) |
|||
(23) |
|||
(24) |
|||
(25) |
Triangular numbers also unexpectedly appear in integrals involving the absolute value of the form
(26) |
All even perfect numbers are triangular with prime . Furthermore, every even perfect number is of the form
(27) |
where is a triangular number with (Eaton 1995, 1996). Therefore, the nested expression
(28) |
generates triangular numbers for any . An integer is a triangular number iff is a square number .
The numbers 1, 36, 1225, 41616, 1413721, 48024900, ... (OEIS A001110) are square triangular numbers, i.e., numbers which are simultaneously triangular and square (Pietenpol 1962). The corresponding square roots are 1, 6, 35, 204, 1189, 6930, ... (OEIS A001109), and the indices of the corresponding triangular numbers are , 8, 49, 288, 1681, ... (OEIS A001108).
Numbers which are simultaneously triangular and tetrahedral satisfy the binomial coefficient equation
(29) |
the only solutions of which are
(30) |
|||
(31) |
|||
(32) |
|||
(33) |
(Guy 1994, p. 147).
The following table gives triangular numbers having prime indices .
class | Sloane | sequence |
with prime indices | A034953 | 3, 6, 15, 28, 66, 91, 153, 190, 276, 435, 496, ... |
odd with prime indices | A034954 | 3, 15, 91, 153, 435, 703, 861, 1431, 1891, 2701, ... |
even with prime indices | A034955 | 6, 28, 66, 190, 276, 496, 946, 1128, 1770, 2278, ... |
The smallest of two integers for which is four times a triangular number is 5, as determined by Cesàro in 1886 (Le Lionnais 1983, p. 56). The only Fibonacci numbers which are triangular are 1, 3, 21, and 55 (Ming 1989), and the only Pell number which is triangular is 1 (McDaniel 1996). The beast number 666 is triangular, since
(34) |
In fact, it is the largest repdigit triangular number (Bellew and Weger 1975-76).
The positive divisors of are all of the form , those of are all of the form , and those of are all of the form ; that is, they end in the decimal digit 1 or 9.
Fermat's polygonal number theorem states that every positive integer is a sum of at most three triangular numbers, four square numbers, five pentagonal numbers, and -polygonal numbers. Gauss proved the triangular case (Wells 1986, p. 47), and noted the event in his diary on July 10, 1796, with the notation
(35) |
This case is equivalent to the statement that every number of the form is a sum of three odd squares (Duke 1997). Dirichlet derived the number of ways in which an integer can be expressed as the sum of three triangular numbers (Duke 1997). The result is particularly simple for a prime of the form , in which case it is the number of squares mod minus the number of nonsquares mod in the interval from 1 to (Deligne 1973, Duke 1997).
The only triangular numbers which are the product of three consecutive integers are 6, 120, 210, 990, 185136, 258474216 (OEIS A001219; Guy 1994, p. 148).
REFERENCES:
Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recreations and Essays, 13th ed. New York: Dover, p. 59, 1987.
Bellew, D. W. and Weger, R. C. "Repdigit Triangular Numbers." J. Recr. Math. 8, 96-97, 1975-76.
Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, pp. 33-38, 1996.
Deligne, P. "La Conjecture de Weil." Inst. Hautes Études Sci. Pub. Math. 43, 273-308, 1973.
Dudeney, H. E. Amusements in Mathematics. New York: Dover, pp. 67 and 167, 1970.
Duke, W. "Some Old Problems and New Results about Quadratic Forms." Not. Amer. Math. Soc. 44, 190-196, 1997.
Eaton, C. F. "Problem 1482." Math. Mag. 68, 307, 1995.
Eaton, C. F. "Perfect Number in Terms of Triangular Numbers." Solution to Problem 1482. Math. Mag. 69, 308-309, 1996.
Guy, R. K. "Sums of Squares" and "Figurate Numbers." §C20 and §D3 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 136-138 and 147-150, 1994.
Hindin, H. "Stars, Hexes, Triangular Numbers and Pythagorean Triples." J. Recr. Math. 16, 191-193, 1983-1984.
Hobson, N. "Triangular Numbers." https://www.qbyte.org/puzzles/p149s.html#triangular.
Le Lionnais, F. Les nombres remarquables. Paris: Hermann, p. 56, 1983.
McDaniel, W. L. "Triangular Numbers in the Pell Sequence." Fib. Quart. 34, 105-107, 1996.
Ming, L. "On Triangular Fibonacci Numbers." Fib. Quart. 27, 98-108, 1989.
Pappas, T. "Triangular, Square & Pentagonal Numbers." The Joy of Mathematics. San Carlos, CA: Wide World Publ./Tetra, p. 214, 1989.
Pietenpol, J. L. "Square Triangular Numbers." Amer. Math. Monthly 169, 168-169, 1962.
Ram, R. "Triangle Numbers that are Perfect Squares." https://users.tellurian.net/hsejar/maths/triangle/.
Satyanarayana, U. V. "On the Representation of Numbers as the Sum of Triangular Numbers." Math. Gaz. 45, 40-43, 1961.
Sloane, N. J. A. Sequences A000217/M2535, A001108/M4536, A001109/M4217, A001110/M5259, A001219, A014493, A014494, A034953, A034955, and A034955 in "The On-Line Encyclopedia of Integer Sequences."
Sloane, N. J. A. and Plouffe, S. The Encyclopedia of Integer Sequences. San Diego, CA: Academic Press, 1995.
Trotter, T. Jr. "Some Identities for the Triangular Numbers." J. Recr. Math. 6, 128-135, 1973.
Wells, D. The Penguin Dictionary of Curious and Interesting Numbers. Middlesex, England: Penguin Books, pp. 47-48, 1986.
Wells, D. The Penguin Dictionary of Curious and Interesting Geometry. London: Penguin, p. 199, 1991.