تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Octahedral Number
المؤلف:
Conway, J. H. and Guy, R. K.
المصدر:
The Book of Numbers. New York: Springer-Verlag
الجزء والصفحة:
...
22-12-2020
1214
A figurate number which is the sum of two consecutive pyramidal numbers,
![]() |
(1) |
The first few are 1, 6, 19, 44, 85, 146, 231, 344, 489, 670, 891, 1156, ... (OEIS A005900). The generating function for the octahedral numbers is
![]() |
(2) |
Pollock (1850) conjectured that every number is the sum of at most 7 octahedral numbers (Dickson 2005, p. 23).
![]() |
![]() |
![]() |
![]() |
![]() |
A related set of numbers is the number of cubes in the Haűy construction of the octahedron. Each cross section has area
![]() |
(3) |
where is an odd number, and adding all cross sections gives
![]() |
(4) |
for an odd number. Re-indexing so that
gives
![]() |
(5) |
the first few values of which are 1, 7, 25, 63, 129, ... (OEIS A001845). These numbers have the generating function
![]() |
(6) |
REFERENCES:
Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, p. 50, 1996.
Dickson, L. E. History of the Theory of Numbers, Vol. 2: Diophantine Analysis. New York: Dover, 2005.
Pollock, F. "On the Extension of the Principle of Fermat's Theorem of the Polygonal Numbers to the Higher Orders of Series Whose Ultimate Differences Are Constant. With a New Theorem Proposed, Applicable to All the Orders." Abs. Papers Commun. Roy. Soc. London 5, 922-924, 1843-1850.
Sloane, N. J. A. Sequences A001845/M4384 and A005900/M4128 in "The On-Line Encyclopedia of Integer Sequences."