تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Pentagonal Number
المؤلف:
Guy, R. K.
المصدر:
"Every Number Is Expressible as the Sum of How Many Polygonal Numbers?." Amer. Math. Monthly 101
الجزء والصفحة:
...
20-12-2020
1135
A polygonal number of the form . The first few are 1, 5, 12, 22, 35, 51, 70, ... (OEIS A000326). The generating function for the pentagonal numbers is
![]() |
Every pentagonal number is 1/3 of a triangular number.
The so-called generalized pentagonal numbers are given by with
,
,
, ..., the first few of which are 0, 1, 2, 5, 7, 12, 15, 22, 26, 35, ... (OEIS A001318).
There are conjectured to be exactly 210 positive integers that cannot be represented using three pentagonal numbers, namely 4, 8, 9, 16, 19, 20, 21, 26, 30, 31, 33, 38, 42, 43, 50, 54, ..., 20250, 33066, (OEIS A007527; Guy 1994a).
There are six positive integers that cannot be expressed using four pentagonal numbers: 9, 21, 31, 43, 55, and 89 (OEIS A133929).
All positive integers can be expressed using five pentagonal numbers.
Letting be the set of numbers relatively prime to 6, the generalized pentagonal numbers are given by
. Also, letting
be the subset of the
for which
, the usual pentagonal numbers are given by
(D. Terr, pers. comm., May 20, 2004).
REFERENCES:
Guy, R. K. "Every Number Is Expressible as the Sum of How Many Polygonal Numbers?." Amer. Math. Monthly 101, 169-172, 1994a.
Guy, R. K. "Sums of Squares." §C20 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 136-138, 1994b.
Pappas, T. "Triangular, Square & Pentagonal Numbers." The Joy of Mathematics. San Carlos, CA: Wide World Publ./Tetra, p. 214, 1989.
Silverman, J. H. A Friendly Introduction to Number Theory. Englewood Cliffs, NJ: Prentice Hall, 1996.
Sloane, N. J. A. Sequences A000326/M3818, A001318/M1336, A003679/M3323, and A133929 in "The On-Line Encyclopedia of Integer Sequences."