

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي


الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية


الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق


الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات


الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل


المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات


التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات


علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان
Tetranacci Number
المؤلف:
Sloane, N. J. A
المصدر:
Sequences A000078/M1108, A086088, A104534, and A104535 in "The On-Line Encyclopedia of Integer Sequences."
الجزء والصفحة:
...
9-12-2020
1438
Tetranacci Number
The tetranacci numbers are a generalization of the Fibonacci numbers defined by
,
,
,
, and the recurrence relation
![]() |
(1) |
for
. They represent the
case of the Fibonacci n-step numbers. The first few terms for
, 1, ... are 0, 1, 1, 2, 4, 8, 15, 29, 56, 108, 208, ... (OEIS A000078).
The first few prime tetranacci numbers have indices 3, 7, 11, 12, 36, 56, 401, 2707, 8417, 14096, 31561, 50696, 53192, 155182, ... (OEIS A104534), corresponding to 2, 29, 401, 773, 5350220959, ... (OEIS A104535), with no others for
(E. W. Weisstein, Mar. 21, 2009).
An exact expression for the
th tetranacci number for
can be given explicitly by
![]() |
(2) |
where the three additional terms are obtained by cyclically permuting
, which are the four roots of the polynomial
![]() |
(3) |
Alternately,
![]() |
(4) |
This can be written in slightly more concise form as
![]() |
(5) |
where
is the
th root of the polynomial
![]() |
(6) |
and
and
are in the ordering of the Wolfram Language's Root object.
The tetranacci numbers have the generating function
![]() |
(7) |
The ratio of adjacent terms tends to the positive real root of
, namely 1.92756... (OEIS A086088), which is sometimes known as the tetranacci constant.
REFERENCES:
Sloane, N. J. A. Sequences A000078/M1108, A086088, A104534, and A104535 in "The On-Line Encyclopedia of Integer Sequences."
الاكثر قراءة في نظرية الاعداد
اخر الاخبار
اخبار العتبة العباسية المقدسة
الآخبار الصحية








قسم الشؤون الفكرية يصدر كتاباً يوثق تاريخ السدانة في العتبة العباسية المقدسة
"المهمة".. إصدار قصصي يوثّق القصص الفائزة في مسابقة فتوى الدفاع المقدسة للقصة القصيرة
(نوافذ).. إصدار أدبي يوثق القصص الفائزة في مسابقة الإمام العسكري (عليه السلام)