

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي


الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية


الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق


الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات


الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل


المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات


التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات


علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان
Digitaddition
المؤلف:
Trott, M.
المصدر:
The Mathematica GuideBook for Programming. New York: Springer-Verlag
الجزء والصفحة:
...
10-11-2020
1032
Digitaddition
Start with an integer
, known as the digitaddition generator. Add the sum of the digitaddition generator's digits to obtain the digitaddition
. A number can have more than one digitaddition generator. If a number has no digitaddition generator, it is called a self number. The sum of all numbers in a digitaddition series is given by the last term minus the first plus the sum of the digits of the last.
If the digitaddition process is performed on
to yield its digitaddition
, on
to yield
, etc., a single-digit number, known as the digital root of
, is eventually obtained. The digital roots of the first few integers are 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, ... (OEIS A010888).
If the process is generalized so that the
th (instead of first) powers of the digits of a number are repeatedly added, a periodic sequence of numbers is eventually obtained for any given starting number
. For example, the 2-digitaddition sequence for
is given by 2,
,
,
,
,
,
, and so on.
If the original number
is equal to the sum of the
th powers of its digits (i.e., the digitaddition sequence has length 2),
is called a Narcissistic number. If the original number is the smallest number in the eventually periodic sequence of numbers in the repeated
-digitadditions, it is called a recurring digital invariant. Both Narcissistic numbers and recurring digital invariants are relatively rare.
The only possible periods for repeated 2-digitadditions are 1 and 8, and the periods of the first few positive integers are 1, 8, 8, 8, 8, 8, 1, 8, 8, 1, ... (OEIS A031176). Similarly, the numbers that correspond to the beginning of the eventually periodic part of a 2-digitaddition sequence are given by 1, 4, 37, 4, 89, 89, 1, 89, 37, 1, 4, ... (OEIS A103369).
The possible periods
for
-digitadditions are summarized in the following table, together with digitadditions for the first few integers and the corresponding sequence numbers. Some periods do not show up for a long time. For example, a period-6 10-digitaddition does not occur until the number 266.
![]() |
OEIS | s |
-digitadditions |
| 2 | A031176 | 1, 8 | 1, 8, 8, 8, 8, 8, 1, 8, 8, 1, ... |
| 3 | A031178 | 1, 2, 3 | 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, ... |
| 4 | A031182 | 1, 2, 7 | 1, 7, 7, 7, 7, 7, 7, 7, 7, 1, 7, 1, 7, 7, ... |
| 5 | A031186 | 1, 2, 4, 6, 10, 12, 22, 28 | 1, 12, 22, 4, 10, 22, 28, 10, 22, 1, ... |
| 6 | A031195 | 1, 2, 3, 4, 10, 30 | 1, 10, 30, 30, 30, 10, 10, 10, 3, 1, 10, ... |
| 7 | A031200 | 1, 2, 3, 6, 12, 14, 21, 27, 30, 56, 92 | 1, 92, 14, 30, 92, 56, 6, 92, 56, 1, 92, 27, ... |
| 8 | A031211 | 1, 25, 154 | 1, 25, 154, 154, 154, 154, 25, 154, 154, 1, 25, 154, 154, 1, ... |
| 9 | A031212 | 1, 2, 3, 4, 8, 10, 19, 24, 28, 30, 80, 93 | 1, 30, 93, 1, 19, 80, 4, 30, 80, 1, 30, 93, 4, 10, ... |
| 10 | A031213 | 1, 6, 7, 17, 81, 123 | 1, 17, 123, 17, 17, 123, 123, 123, 123, 1, 17, 123, 17, ... |
The numbers having period-1 2-digitaddition sequences are also called happy numbers, the first few of which are 1, 7, 10, 13, 19, 23, 28, 31, 32, ... (OEIS A007770).
The first few numbers having period
-digitadditions are summarized in the following table.
![]() |
![]() |
OEIS | members |
| 2 | 1 | A007770 | 1, 7, 10, 13, 19, 23, 28, 31, 32, ... |
| 2 | 8 | A031177 | 2, 3, 4, 5, 6, 8, 9, 11, 12, 14, 15, ... |
| 3 | 1 | A031179 | 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, ... |
| 3 | 2 | A031180 | 49, 94, 136, 163, 199, 244, 316, ... |
| 3 | 3 | A031181 | 4, 13, 16, 22, 25, 28, 31, 40, 46, ... |
| 4 | 1 | A031183 | 1, 10, 12, 17, 21, 46, 64, 71, 100, ... |
| 4 | 2 | A031184 | 66, 127, 172, 217, 228, 271, 282, ... |
| 4 | 7 | A031185 | 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 14, ... |
| 5 | 1 | A031187 | 1, 10, 100, 145, 154, 247, 274, ... |
| 5 | 2 | A031188 | 133, 139, 193, 199, 226, 262, ... |
| 5 | 4 | A031189 | 4, 37, 40, 55, 73, 124, 142, ... |
| 5 | 6 | A031190 | 16, 61, 106, 160, 601, 610, 778, ... |
| 5 | 10 | A031191 | 5, 8, 17, 26, 35, 44, 47, 50, 53, ... |
| 5 | 12 | A031192 | 2, 11, 14, 20, 23, 29, 32, 38, 41, ... |
| 5 | 22 | A031193 | 3, 6, 9, 12, 15, 18, 21, 24, 27, ... |
| 5 | 28 | A031194 | 7, 13, 19, 22, 25, 28, 31, 34, 43, ... |
| 6 | 1 | A011557 | 1, 10, 100, 1000, 10000, 100000, ... |
| 6 | 2 | A031357 | 3468, 3486, 3648, 3684, 3846, ... |
| 6 | 3 | A031196 | 9, 13, 31, 37, 39, 49, 57, 73, 75, ... |
| 6 | 4 | A031197 | 255, 466, 525, 552, 646, 664, ... |
| 6 | 10 | A031198 | 2, 6, 7, 8, 11, 12, 14, 15, 17, 19, ... |
| 6 | 30 | A031199 | 3, 4, 5, 16, 18, 22, 29, 30, 33, ... |
| 7 | 1 | A031201 | 1, 10, 100, 1000, 1259, 1295, ... |
| 7 | 2 | A031202 | 22, 202, 220, 256, 265, 526, 562, ... |
| 7 | 3 | A031203 | 124, 142, 148, 184, 214, 241, 259, ... |
| 7 | 6 | 7, 70, 700, 7000, 70000, 700000, ... | |
| 7 | 12 | A031204 | 17, 26, 47, 59, 62, 71, 74, 77, 89, ... |
| 7 | 14 | A031205 | 3, 30, 111, 156, 165, 249, 294, ... |
| 7 | 21 | A031206 | 19, 34, 43, 91, 109, 127, 172, 190, ... |
| 7 | 27 | A031207 | 12, 18, 21, 24, 39, 42, 45, 54, 78, ... |
| 7 | 30 | A031208 | 4, 13, 16, 25, 28, 31, 37, 40, 46, ... |
| 7 | 56 | A031209 | 6, 9, 15, 27, 33, 36, 48, 51, 57, ... |
| 7 | 92 | A031210 | 2, 5, 8, 11, 14, 20, 23, 29, 32, 35, ... |
| 8 | 1 | 1, 10, 14, 17, 29, 37, 41, 71, 73, ... | |
| 8 | 25 | 2, 7, 11, 15, 16, 20, 23, 27, 32, ... | |
| 8 | 154 | 3, 4, 5, 6, 8, 9, 12, 13, 18, 19, ... | |
| 9 | 1 | 1, 4, 10, 40, 100, 400, 1000, 1111, ... | |
| 9 | 2 | 127, 172, 217, 235, 253, 271, 325, ... | |
| 9 | 3 | 444, 4044, 4404, 4440, 4558, ... | |
| 9 | 4 | 7, 13, 31, 67, 70, 76, 103, 130, ... | |
| 9 | 8 | 22, 28, 34, 37, 43, 55, 58, 73, 79, ... | |
| 9 | 10 | 14, 38, 41, 44, 83, 104, 128, 140, ... | |
| 9 | 19 | 5, 26, 50, 62, 89, 98, 155, 206, ... | |
| 9 | 24 | 16, 61, 106, 160, 337, 373, 445, ... | |
| 9 | 28 | 19, 25, 46, 49, 52, 64, 91, 94, ... | |
| 9 | 30 | 2, 8, 11, 17, 20, 23, 29, 32, 35, ... | |
| 9 | 80 | 6, 9, 15, 18, 24, 33, 42, 48, 51, ... | |
| 9 | 93 | 3, 12, 21, 27, 30, 36, 39, 45, 54, ... | |
| 10 | 1 | A011557 | 1, 10, 100, 1000, 10000, 100000, ... |
| 10 | 6 | 266, 626, 662, 1159, 1195, 1519, ... | |
| 10 | 7 | 46, 58, 64, 85, 122, 123, 132, ... | |
| 10 | 17 | 2, 4, 5, 11, 13, 20, 31, 38, 40, ... | |
| 10 | 81 | 17, 18, 37, 71, 73, 81, 107, 108, ... | |
| 10 | 123 | 3, 6, 7, 8, 9, 12, 14, 15, 16, 19, ... |
REFERENCES:
Sloane, N. J. A. Sequences A007770, A011557, A011557, A031177, A031179, A031180, A031181, A031183, A031184, A031185, A031187, A031188, A031189, A031190, A031191, A031192, A031193, A031194, A031196, A031197, A031198, A031199, A031201, A031202, A031203, A031204, A031205, A031206, A031207, A031208, A031209, A031210, A031357, and A103369 in "The On-Line Encyclopedia of Integer Sequences."
Trott, M. The Mathematica GuideBook for Programming. New York: Springer-Verlag, p. 28, 2004. https://www.mathematicaguidebooks.org/.
الاكثر قراءة في نظرية الاعداد
اخر الاخبار
اخبار العتبة العباسية المقدسة
الآخبار الصحية


s
-digitadditions

قسم الشؤون الفكرية يصدر كتاباً يوثق تاريخ السدانة في العتبة العباسية المقدسة
"المهمة".. إصدار قصصي يوثّق القصص الفائزة في مسابقة فتوى الدفاع المقدسة للقصة القصيرة
(نوافذ).. إصدار أدبي يوثق القصص الفائزة في مسابقة الإمام العسكري (عليه السلام)