

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي


الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية


الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق


الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات


الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل


المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات


التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات


علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان
Szemerédi,s Theorem
المؤلف:
Erdős, P. and Turán, P.
المصدر:
"On Some Sequences of Integers." J. London Math. Soc. 11
الجزء والصفحة:
...
7-11-2020
2327
Szemerédi's Theorem
Szemerédi's theorem states that every sequence of integers that has positive upper Banach density contains arbitrarily long arithmetic progressions.
A corollary states that, for any positive integer
and positive real number
, there exists a threshold number
such that for
every subset of {1,2,...,n}" src="https://mathworld.wolfram.com/images/equations/SzemeredisTheorem/Inline5.gif" style="height:15px; width:69px" /> with cardinal number larger than
contains a
-term arithmetic progression. van der Waerden's Theorem follows immediately by setting
. The best bounds for van der Waerden numbers are derived from bounds for
in Szemerédi's theorem.
Szemerédi's theorem was conjectured by Erdős and Turán (1936). Roth (1953) proved the case
, and was mentioned in his Fields Medal citation. Szemerédi (1969) proved the case
, and the general theorem in 1975 as a consequence of Szemerédi's regularity lemma (Szemerédi 1975a), for which he collected a $1000 prize from Erdos. Fürstenberg and Katznelson (1979) proved Szemerédi's theorem using ergodic theory. Gowers (1998ab) subsequently gave a new proof, with a better bound on
, for the case
(mentioned in his Fields Medal citation; Lepowsky et al. 1999).
REFERENCES:
Erdős, P. and Turán, P. "On Some Sequences of Integers." J. London Math. Soc. 11, 261-264, 1936.
Fürstenberg, H. "Ergodic Behavior of Diagonal Measures and a Theorem of Szemerédi on Arithmetic Progressions." J. Analyse Math. 31, 204-256, 1977.
Fürstenberg, H. and Katznelson, Y. "An Ergodic Szemerédi Theorem for Commuting Transformations." J. Analyse Math. 34, 275-291, 1979.
Fürstenberg, H. and Weiss, B. "A Mean Ergodic Theorem for
." In Convergence in Ergodic Theory and Probability (Columbus OH 1993). Berlin: de Gruyter, pp. 193-227, 1996.
Fürstenberg, H.; Katznelson, Y.; and Ornstein, D. "The Ergodic-Theoretical Proof of Szemerédi's Theorem." Bull. Amer. Math. Soc. 7, 527-552, 1982.
Gowers, W. T. "Fourier Analysis and Szemerédi's Theorem." In Proceedings of the International Congress of Mathematicians, Vol. I (Berlin, 1998). Doc. Math., Extra Vol. I, 617-629, 1998a.
Gowers, W. T. "A New Proof of Szemerédi's Theorem for Arithmetic Progressions of Length Four." Geom. Funct. Anal. 8, pp. 529-551, 1998b.
Gowers, W. T. "A New Proof of Szemerédi's Theorem." Geom. Funct. Anal. 11, 465-588, 2001.
Graham, R. L.; Rothschild, B. L.; and Spencer, J. H. Ramsey Theory, 2nd ed. New York: Wiley, 1990.
Green, B. and Tao, T. "The Primes Contain Arbitrarily Long Arithmetic Progressions." Preprint. 8 Apr 2004. https://arxiv.org/abs/math.NT/0404188.
Guy, R. K. "Theorem of van der Waerden, Szemerédi's Theorem. Partitioning the Integers into Classes; at Least One Contains an A.P." §E10 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 204-209, 1994.
Lepowsky, J.; Lindenstrauss, J.; Manin, Y.; and Milnor, J. "The Mathematical Work of the 1998 Fields Medalists." Not. Amer. Math. Soc. 46, 17-26, 1999.
Roth, K. "Sur quelques ensembles d'entiers." Comptes Rendus Acad. Sci. Paris 234, 388-390, 1952.
Roth, K. F. "On Certain Sets of Integers." J. London Math. Soc. 28, 104-109, 1953.
Szemerédi, E. "On Sets of Integers Containing No Four Elements in Arithmetic Progression." Acta Math. Acad. Sci. Hungar. 20, 89-104, 1969.
Szemerédi, E. "On Sets of Integers Containing No
Elements in Arithmetic Progression." Acta Arith. 27, 199-245, 1975a.
Szemerédi, E. "On Sets of Integers Containing No
Elements in Arithmetic Progression." In Proceedings of the International Congress of Mathematicians, Volume 2, Held in Vancouver, B.C., August 21-29, 1974. Montreal, Quebec: Canad. Math. Congress, pp. 503-505, 1975b.
الاكثر قراءة في نظرية الاعداد
اخر الاخبار
اخبار العتبة العباسية المقدسة
الآخبار الصحية

قسم الشؤون الفكرية يصدر كتاباً يوثق تاريخ السدانة في العتبة العباسية المقدسة
"المهمة".. إصدار قصصي يوثّق القصص الفائزة في مسابقة فتوى الدفاع المقدسة للقصة القصيرة
(نوافذ).. إصدار أدبي يوثق القصص الفائزة في مسابقة الإمام العسكري (عليه السلام)