1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية الاعداد :

196-Algorithm

المؤلف:  Gardner, M

المصدر:  Mathematical Circus: More Puzzles, Games, Paradoxes and Other Mathematical Entertainments from Scientific American. New York: Knopf

الجزء والصفحة:  ...

22-10-2020

1044

196-Algorithm

Take any positive integer of two digits or more, reverse the digits, and add to the original number. This is the operation of the reverse-then-add sequence. Now repeat the procedure with the sum so obtained until a palindromic number is obtained. This procedure quickly produces palindromic numbers for most integers. For example, starting with the number 5280 produces the sequence 5280, 6105, 11121, 23232. The end results of applying the algorithm to 1, 2, 3, ... are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 11, 33, 44, 55, 66, 77, 88, 99, 121, ... (OEIS A033865). The value for 89 is especially large, being 8813200023188.

The first few numbers not known to produce palindromes, sometimes known as Lychrel numbers (VanLandingham), are 196, 295, 394, 493, 592, 689, 691, 788, 790, 879, 887, ... (OEIS A023108).

The numbers obtained by iteratively applying the algorithm to 196, the smallest such number, are 196, 887, 1675, 7436, 13783, ... (OEIS A006960), and no palindromic member of this sequence is known. The special number 196 therefore lends itself to the name of the reverse-then-add algorithm. In 1990, John Walker computed 2415836 iterations of the algorithm on 196 and obtained a number having 1000000 digits. This was extended in 1995 by Tim Irvin, who obtained a number having 2000000 digits. M. Sofroniou (pers. comm., Feb. 16, 2002) gave an efficient Wolfram Language implementation that has complexity O(k^2) for k steps, requiring approximately 10.6 hours on a 450 MHz Pentium II to compute 250000 iterations. Extrapolating the timing data suggests that approximately 42 days would be needed on this same machine to match Walker's 2415836 iterations.

The rec.puzzles archive incorrectly states that a 3924257-digit nonpalindromic number is obtained after 9480000 iterations. However, the correct resulting number is 3924578 digits long. As of May 1, 2006, it had been determined after 724756966 iterations that a resulting palindromic number would have more than 300 million digits (VanLandingham).

The number of terms a(n) in the iteration sequence required to produce a palindromic number from n (i.e., a(n)=1 for a palindromic number, a(n)=2 if a palindromic number is produced after a single iteration of the 196-algorithm, etc.) for n=1, 2, ... are 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 1, ... (OEIS A030547). The smallest numbers that require n=0, 1, 2, ... iterations to reach a palindrome are 0, 10, 19, 59, 69, 166, 79, 188, ... (OEIS A023109).


REFERENCES:

De Geest, P. "Websources about '196' Becoming Palindromic by Using Reversal Sums." https://www.worldofnumbers.com/weblinks.htm.

Eddins, S. "The Palindromic Order of a Number." IMSA Math. J. 4, Spring 1996. https://www.imsa.edu/edu/math/journal/volume4/webver/palinord.html.

Gardner, M. Mathematical Circus: More Puzzles, Games, Paradoxes and Other Mathematical Entertainments from Scientific American. New York: Knopf, pp. 242-245, 1979.

Gruenberger, F. "How to Handle Numbers with Thousands of Digits, and Why One Might Want To." Sci. Amer. 250, 19-26, Apr. 1984.

Irving, T. "About Two Months of Computing, or, An Addendum to Mr. Walker's Three Years of Computing" https://www.fourmilab.ch/documents/threeyears/two_months_more.html.

Math Forum. "Ask Dr. Math: Making Numbers into Palindromic Numbers." https://mathforum.org/dr.math/problems/barnes10.11.html.

MathPages. "Digit Reversal Sums Leading to Palindromes." https://www.mathpages.com/home/kmath004.htm.

Peters, I. J. "Search for the Biggest Numeric Palindrome." https://www.floot.demon.co.uk/palindromes.html.

rec.puzzles archive. 1996. ftp://rtfm.mit.edu/pub/usenet/news.answers/puzzles/archive/arithmetic/part1.

Sloane, N. J. A. Sequences A006960/M5410, A023108, A023109, A030547, and A033865 in "The On-Line Encyclopedia of Integer Sequences."

VanLandingham, W. "196 and Other Lychrel Numbers." https://www.p196.org/.

Walker, J. "Three Years of Computing: Final Report on the Palindrome Quest." https://www.fourmilab.ch/documents/threeyears/threeyears.html.

EN

تصفح الموقع بالشكل العمودي