

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي


الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية


الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق


الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات


الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل


المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات


التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات


علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان
Jumping Champion
المؤلف:
Erdős, P.; and Straus, E. G.
المصدر:
"Remarks on the Differences Between Consecutive Primes." Elem. Math. 35
الجزء والصفحة:
...
7-10-2020
1047
Jumping Champion

An integer
is called a jumping champion if
is the most frequently occurring difference between consecutive primes
(Odlyzko et al. 1999). This term was coined by J. H. Conway in 1993. There are occasionally several jumping champions in a range. The scatter plots above show the jumping champions for small
, and the ranges of number having given jumping champion sets are summarized in the following table.
![]() |
![]() |
| 1 | 3 |
| 1, 2 | 5 |
| 2 | 7-100, 103-106, 109-112, ... |
| 2, 4 | 101-102, 107-108, 113-130, ... |
| 4 | 131-138, ... |
| 2, 4, 6 | 179-180, 467-490, ... |
| 2, 6 | 379-388, 421-432, ... |
| 6 | 389-420, ... |
Odlyzko et al. (1999) give a table of jumping champions for
, consisting mainly of 2, 4, and 6. 6 is the jumping champion up to about
, at which point 30 dominates. At
, 210 becomes champion, and subsequent primorials are conjectured to take over at larger and larger
. Erdős and Straus (1980) proved that the jumping champions tend to infinity under the assumption of a quantitative form of the
-tuples conjecture.
Wolf gives a table of approximate values
at which the primorial
will become a champion. An estimate for
is given by
![]() |
REFERENCES:
Erdős, P.; and Straus, E. G. "Remarks on the Differences Between Consecutive Primes." Elem. Math. 35, 115-118, 1980.
Guy, R. K. Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, 1994.
Nelson, H. "Problem 654." J. Recr. Math. 11, 231, 1978-1979.
Odlyzko, A.; Rubinstein, M.; and Wolf, M. "Jumping Champions." Experiment. Math. 8, 107-118, 1999.
Wolf, M. https://www.ift.uni.wroc.pl/~mwolf/.
الاكثر قراءة في نظرية الاعداد
اخر الاخبار
اخبار العتبة العباسية المقدسة
الآخبار الصحية




قسم الشؤون الفكرية يصدر كتاباً يوثق تاريخ السدانة في العتبة العباسية المقدسة
"المهمة".. إصدار قصصي يوثّق القصص الفائزة في مسابقة فتوى الدفاع المقدسة للقصة القصيرة
(نوافذ).. إصدار أدبي يوثق القصص الفائزة في مسابقة الإمام العسكري (عليه السلام)