تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Partition Function Q
المؤلف:
Abramowitz, M. and Stegun, I. A.
المصدر:
"Partitions into Distinct Parts." §24.2.2 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover
الجزء والصفحة:
...
26-9-2020
1426
, also denoted
(Abramowitz and Stegun 1972, p. 825), gives the number of ways of writing the integer
as a sum of positive integers without regard to order with the constraint that all integers in a given partition are distinct. For example,
, since the partitions of 10 into distinct parts are
{1,2,3,4}" src="https://mathworld.wolfram.com/images/equations/PartitionFunctionQ/Inline5.gif" style="height:15px; width:62px" />,
{2,3,5}" src="https://mathworld.wolfram.com/images/equations/PartitionFunctionQ/Inline6.gif" style="height:15px; width:47px" />,
{1,4,5}" src="https://mathworld.wolfram.com/images/equations/PartitionFunctionQ/Inline7.gif" style="height:15px; width:47px" />,
{1,3,6}" src="https://mathworld.wolfram.com/images/equations/PartitionFunctionQ/Inline8.gif" style="height:15px; width:47px" />,
{4,6}" src="https://mathworld.wolfram.com/images/equations/PartitionFunctionQ/Inline9.gif" style="height:15px; width:32px" />,
{1,2,7}" src="https://mathworld.wolfram.com/images/equations/PartitionFunctionQ/Inline10.gif" style="height:15px; width:47px" />,
{3,7}" src="https://mathworld.wolfram.com/images/equations/PartitionFunctionQ/Inline11.gif" style="height:15px; width:32px" />,
{2,8}" src="https://mathworld.wolfram.com/images/equations/PartitionFunctionQ/Inline12.gif" style="height:15px; width:32px" />,
{1,9}" src="https://mathworld.wolfram.com/images/equations/PartitionFunctionQ/Inline13.gif" style="height:15px; width:32px" />,
{10}" src="https://mathworld.wolfram.com/images/equations/PartitionFunctionQ/Inline14.gif" style="height:15px; width:24px" />. The
function is implemented in the Wolfram Language as PartitionsQ[n].
is generally defined to be 1.
The values for , 2, ... are 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, ... (OEIS A000009).
The first few prime values of are for indices 3, 4, 5, 7, 22, 70, 100, 495, 1247, 2072, 320397, 3335367, 16168775, 37472505, 52940251, 78840125, 81191852, ... (OEIS A035359), corresponding to values 2, 2, 3, 5, 89, 29927, 444793, 602644050950309, ... (OEIS A051005), with no others up to
(M. Alekseyev, Jul. 10, 2015).
is also the number of partitions of
with odd parts, sometimes denoted
(Andrews 1998, p. 237).
The generating function for is
![]() |
![]() |
![]() |
(1) |
![]() |
![]() |
![]() |
(2) |
![]() |
![]() |
![]() |
(3) |
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
where and
areq-Pochhammer symbols.
This can also be interpreted as another form of the Jacobi triple product, written in terms of the Q-functions as
![]() |
(7) |
(Borwein and Borwein 1987, p. 64).
A recurrence relation is given by and
![]() |
(8) |
where
(9) |
and
![]() |
(10) |
is the odd divisor function giving the sum of odd divisors of : 1, 1, 4, 1, 6, 4, 8, ... (OEIS A000593; Abramowitz and Stegun 1972, p. 826).
Another recurrence relation is given by and
![]() |
(11) |
where
(12) |
(E. Georgiadis, A. V. Sutherland, and K. S. Kedlaya; Sloane).
satisfies the inequality
![]() |
(13) |
for .
has the asymptotic series
![]() |
(14) |
(Abramowitz and Stegun 1972, p. 826).
A Rademacher-like convergent series for is given by
![]() |
(15) |
where
![]() |
(16) |
(P. J. Grabner, pers. comm., Sep. 10, 2003; Hagis 1964ab, 1965), where means
and
are relatively prime,
![]() |
(17) |
is a Dedekind sum, is the floor function, and
is the zeroth order Bessel function of the first kind. Equation (16) corrects Abramowitz and Stegun (1972, p. 825), which erroneously state to be identical to the analogous expression in the formula for
). (15) can also be written explicitly as
![]() |
(18) |
where is a generalized hypergeometric function.
Let denote the number of ways of partitioning
into exactly
distinct parts. For example,
since there are four partitions of 10 into three distinct parts:
{1,2,7}" src="https://mathworld.wolfram.com/images/equations/PartitionFunctionQ/Inline62.gif" style="height:15px; width:47px" />,
{1,3,6}" src="https://mathworld.wolfram.com/images/equations/PartitionFunctionQ/Inline63.gif" style="height:15px; width:47px" />,
{1,4,5}" src="https://mathworld.wolfram.com/images/equations/PartitionFunctionQ/Inline64.gif" style="height:15px; width:47px" />, and
{2,3,5}" src="https://mathworld.wolfram.com/images/equations/PartitionFunctionQ/Inline65.gif" style="height:15px; width:47px" />.
is given by
![]() |
(19) |
where is the partition function P and
is a binomial coefficient (Comtet 1974, p. 116). The following table gives the first few values of
(OEIS A008289; Comtet 1974, pp. 115-116).
![]() |
1 | 2 | 3 | 4 |
1 | 1 | |||
2 | 1 | |||
3 | 1 | 1 | ||
4 | 1 | 1 | ||
5 | 1 | 2 | ||
6 | 1 | 2 | 1 | |
7 | 1 | 3 | 1 | |
8 | 1 | 3 | 2 | |
9 | 1 | 4 | 3 | |
10 | 1 | 4 | 4 | 1 |
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). "Partitions into Distinct Parts." §24.2.2 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 825-826, 1972.
Andrews, G. E. The Theory of Partitions. Cambridge, England: Cambridge University Press, pp. 7-8, 1998.
Borwein, J. M. and Borwein, P. B. Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity. New York: Wiley, 1987.
Comtet, L. Advanced Combinatorics: The Art of Finite and Infinite Expansions, rev. enl. ed. Dordrecht, Netherlands: Reidel, pp. 114-115, 1974.
Hagis, P. Jr. "Partitions Into Odd and Unequal Parts." Amer. J. Math. 86, 317-324, 1964a.
Hagis, P. Jr. "On a Class of Partitions with Distinct Summands." Trans. Amer. Math. Soc. 112, 401-415, 1964b.
Hagis, P. Jr. "A Correction of Some Theorems on Partitions." Trans. Amer. Math. Soc. 118, 550, 1965.
Skiena, S. Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, p. 58, 1990.
Sloane, N. J. A. Sequences A000009/M0281, A000593/M3197, A008289, A035359 in "The On-Line Encyclopedia of Integer Sequences."