تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Legendre,s Conjecture
المؤلف:
Chen, J. R.
المصدر:
"On the Distribution of Almost Primes in an Interval." Sci. Sinica 18
الجزء والصفحة:
...
6-9-2020
946
Legendre's Conjecture
Legendre's conjecture asserts that for every there exists a prime
between
and
(Hardy and Wright 1979, p. 415; Ribenboim 1996, pp. 397-398). It is one of Landau's problems.
Although it is not known if there always exists a prime between
and
, Chen (1975) has shown that a number
which is either a prime or semiprime does always satisfy this inequality. Moreover, there is always a prime between
and
where
(Iwaniec and Pintz 1984; Hardy and Wright 1979, p. 415).
The smallest primes between and
for
, 2, ..., are 2, 5, 11, 17, 29, 37, 53, 67, 83, ... (OEIS A007491). The numbers of primes between
and
for
, 2, ... are given by 2, 2, 2, 3, 2, 4, 3, 4, ... (OEIS A014085).
REFERENCES:
Chen, J. R. "On the Distribution of Almost Primes in an Interval." Sci. Sinica 18, 611-627, 1975.
Hardy, G. H. and Wright, W. M. "Unsolved Problems Concerning Primes." §2.8 and Appendix §3 in An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Oxford University Press, pp. 19 and 415-416, 1979.
Iwaniec, H. and Pintz, J. "Primes in Short Intervals." Monatsh. f. Math. 98, 115-143, 1984.
Ribenboim, P. The New Book of Prime Number Records, 3rd ed. New York: Springer-Verlag, pp. 132-134 and 206-208, 1996.
Sloane, N. J. A. Sequences A007491/M1389 and A014085 in "The On-Line Encyclopedia of Integer Sequences."
الاكثر قراءة في نظرية الاعداد
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
