تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Totient Valence Function
المؤلف:
Conway, J. H. and Guy, R. K.
المصدر:
The Book of Numbers. New York: Springer-Verlag
الجزء والصفحة:
...
28-8-2020
1843
is the number of integers
for which the totient function
, also called the multiplicity of
(Guy 1994). Erdős (1958) proved that if a multiplicity occurs once, it occurs infinitely often.
The values of for
, 2, ... are 2, 3, 0, 4, 0, 4, 0, 5, 0, 2, 0, 6, ... (OEIS A014197), and the nonzero values are 2, 3, 4, 4, 5, 2, 6, 6, 4, 5, 2, 10, 2, 2, 7, 8, 9, ... (OEIS A058277), which occur for
, 2, 4, 6, 8, 10, 12, 16, 18, 20, ... (OEIS A002202). The table below lists values for
.
![]() |
![]() |
![]() ![]() |
1 | 2 | 1, 2 |
2 | 3 | 3, 4, 6 |
4 | 4 | 5, 8, 10, 12 |
6 | 4 | 7, 9, 14, 18 |
8 | 5 | 15, 16, 20, 24, 30 |
10 | 2 | 11, 22 |
12 | 6 | 13, 21, 26, 28, 36, 42 |
16 | 6 | 17, 32, 34, 40, 48, 60 |
18 | 4 | 19, 27, 38, 54 |
20 | 5 | 25, 33, 44, 50, 66 |
22 | 2 | 23, 46 |
24 | 10 | 35, 39, 45, 52, 56, 70, 72, 78, 84, 90 |
28 | 2 | 29, 58 |
30 | 2 | 31, 62 |
32 | 7 | 51, 64, 68, 80, 96, 102, 120 |
36 | 8 | 37, 57, 63, 74, 76, 108, 114, 126 |
40 | 9 | 41, 55, 75, 82, 88, 100, 110, 132, 150 |
42 | 4 | 43, 49, 86, 98 |
44 | 3 | 69, 92, 138 |
46 | 2 | 47, 94 |
48 | 11 | 65, 104, 105, 112, 130, 140, 144, 156, 168, 180, 210 |
The smallest such that
has exactly 2, 3, 4, ... solutions are given by 1, 2, 4, 8, 12, 32, 36, 40, 24, ... (OEIS A007374). Including Carmichael's conjecture that
has no solutions, the smallest
such that
has exactly 0, 1, 2, 3, 4, ... solutions are given by 3, 0, 1, 2, 4, 8, 12, 32, 36, 40, 24, ... (OEIS A014573). A table listing the first value of
with multiplicities up to 100 follows.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
0 | 3 | 26 | 2560 | 51 | 4992 | 76 | 21840 |
2 | 1 | 27 | 384 | 52 | 17640 | 77 | 9072 |
3 | 2 | 28 | 288 | 53 | 2016 | 78 | 38640 |
4 | 4 | 29 | 1320 | 54 | 1152 | 79 | 9360 |
5 | 8 | 30 | 3696 | 55 | 6000 | 80 | 81216 |
6 | 12 | 31 | 240 | 56 | 12288 | 81 | 4032 |
7 | 32 | 32 | 768 | 57 | 4752 | 82 | 5280 |
8 | 36 | 33 | 9000 | 58 | 2688 | 83 | 4800 |
9 | 40 | 34 | 432 | 59 | 3024 | 84 | 4608 |
10 | 24 | 35 | 7128 | 60 | 13680 | 85 | 16896 |
11 | 48 | 36 | 4200 | 61 | 9984 | 86 | 3456 |
12 | 160 | 37 | 480 | 62 | 1728 | 87 | 3840 |
13 | 396 | 38 | 576 | 63 | 1920 | 88 | 10800 |
14 | 2268 | 39 | 1296 | 64 | 2400 | 89 | 9504 |
15 | 704 | 40 | 1200 | 65 | 7560 | 90 | 18000 |
16 | 312 | 41 | 15936 | 66 | 2304 | 91 | 23520 |
17 | 72 | 42 | 3312 | 67 | 22848 | 92 | 39936 |
18 | 336 | 43 | 3072 | 68 | 8400 | 93 | 5040 |
19 | 216 | 44 | 3240 | 69 | 29160 | 94 | 26208 |
20 | 936 | 45 | 864 | 70 | 5376 | 95 | 27360 |
21 | 144 | 46 | 3120 | 71 | 3360 | 96 | 6480 |
22 | 624 | 47 | 7344 | 72 | 1440 | 97 | 9216 |
23 | 1056 | 48 | 3888 | 73 | 13248 | 98 | 2880 |
24 | 1760 | 49 | 720 | 74 | 11040 | 99 | 26496 |
25 | 360 | 50 | 1680 | 75 | 27720 | 100 | 34272 |
It is thought that (i.e., the totient valence function never takes on the value 1), but this has not been proven. This assertion is called Carmichael's totient function conjecture and is equivalent to the statement that for all
, there exists
such that
(Ribenboim 1996, pp. 39-40). Any counterexample must have more than
digits (Schlafly and Wagon 1994; erroneously given as
in Conway and Guy 1996).
REFERENCES:
Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, p. 155, 1996.
Erdős, P. "Some Remarks on Euler's -Function." Acta Math. 4, 10-19, 1958.
Ford, K. "The Distribution of Totients." Ramanujan J. 2, 67-151, 1998.
Ford, K. "The Distribution of Totients, Electron. Res. Announc. Amer. Math. Soc. 4, 27-34, 1998.
Guy, R. K. Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, p. 94, 1994.
Ribenboim, P. The New Book of Prime Number Records. New York: Springer-Verlag, 1996.
Schlafly, A. and Wagon, S. "Carmichael's Conjecture on the Euler Function is Valid Below ." Math. Comput. 63, 415-419, 1994.
Sloane, N. J. A. Sequences A002202/M0987, A007374/M1093, A014197, A014573, A058277, and A082695 in "The On-Line Encyclopedia of Integer Sequences."