تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Riemann-Siegel Formula
المؤلف:
Borwein, J. and Bailey, D
المصدر:
Mathematics by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A K Peters
الجزء والصفحة:
...
27-8-2020
872
The Riemann-Siegel formula is a formula discovered (but not published) by Riemann for computing an asymptotic formula for the Riemann-Siegel function . The formula was subsequently discovered in an archive of Riemann's papers by C. L. Siegel (Edwards 2001, p. 136; Derbyshire 2004, pp. 257 and 263) and published by Siegel in 1932.
The Riemann-Siegel formula states that
![]() |
(1) |
where
![]() |
![]() |
![]() |
(2) |
![]() |
![]() |
![]() |
(3) |
![]() |
![]() |
(4) |
|
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
![]() |
![]() |
![]() |
(7) |
is the floor function (Edwards 2001), and
is coefficient notation. The first few terms
are given by
![]() |
![]() |
![]() |
(8) |
![]() |
![]() |
![]() |
(9) |
![]() |
![]() |
![]() |
(10) |
![]() |
![]() |
![]() |
(11) |
![]() |
![]() |
![]() |
(12) |
![]() |
![]() |
![]() |
(13) |
The numerators and denominators are 1, , 1, 1,
,
,
, 1, 19, 11, 1,
,
, ... (OEIS A050276) and 1, 96, 64, 18432, 64, 3840, 5308416, 128, ... (OEIS A050277), respectively.
It is based on evaluation of the integral
![]() |
![]() |
![]() |
(14) |
![]() |
![]() |
![]() |
(15) |
also denoted , where
is a line segment of slope 1, directed from upper right to lower left, which crosses the imaginary axis between 0 and
(Edwards 2001, p. 147).
Another formula ascribed to Riemann and Siegel is the one presented by Riemann in his groundbreaking 1859 paper,
![]() |
(16) |
where is the prime counting function,
is the logarithmic integral, and
is the set of
such that
and
is a (nontrivial) zero of the Riemann zeta function
. Here, the left side is the overcount of
as an estimator for the prime counting function normalized by the apparent size of the error term (Borwein and Bailey 2003, p. 68).
REFERENCES:
Borwein, J. and Bailey, D. Mathematics by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A K Peters, p. 68, 2003.
Borwein, J.; Bailey, D.; and Girgensohn, R. Experimentation in Mathematics: Computational Paths to Discovery. Wellesley, MA: A K Peters, 2004.
Derbyshire, J. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. New York: Penguin, 2004.
Edwards, H. M. "The Riemann-Siegel Formula." Ch. 7 in Riemann's Zeta Function. New York: Dover, pp. 136-170, 2001.
Granville, A. and Martin, G. "Prime Number Races." Aug. 24, 2004. https://www.arxiv.org/abs/math.NT/0408319.
Riemann, G. F. B. "Über die Anzahl der Primzahlen unter einer gegebenen Grösse." Monatsber. Königl. Preuss. Akad. Wiss. Berlin, 671-680, Nov. 1859. Reprinted in Das Kontinuum und Andere Monographen (Ed. H. Weyl). New York: Chelsea, 1972.
Sloane, N. J. A. Sequences A050276 and A050277 in "The On-Line Encyclopedia of Integer Sequences."