1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية الاعداد :

Riemann Function

المؤلف:  Conway, J. H. and Guy, R. K

المصدر:  The Book of Numbers. New York: Springer-Verlag

الجزء والصفحة:  ...

27-8-2020

849

Riemann Function

There are a number of functions in various branches of mathematics known as Riemann functions. Examples include the Riemann P-series, Riemann-Siegel functions, Riemann theta function, Riemann zeta function, xi-function, the function F(x) obtained by Riemann in studying Fourier series, the function R(x,y;xi,eta) appearing in the application of the Riemann method for solving the Goursat problem, the Riemann prime counting function f(x), and the related the function R(n) obtained by replacing f(x) with li(x^(1/n)) in the Möbius inversion formula.

The Riemann function F(x) for a Fourier series

 1/2a_0+sum_(n=1)^infty[a_ncos(nx)+b_nsin(nx)]

(1)

is obtained by integrating twice term by term to obtain

 F(x)=1/4a_0x^2-sum_(n=1)^infty1/(n^2)[a_ncos(nx)+b_nsin(nx)]+Cx+D,

(2)

where C and D are constants (Riemann 1957; Hazewinkel 1988, vol. 8, p. 118).

The Riemann function R(x,y;xi,eta) arises in the solution of the linear case of the Goursat problem of solving the hyperbolic partial differential equation

 L^~u=u_(xy)+au_x+bu_y+cu=f

(3)

with boundary conditions

u(0,t) = phi(t)

(4)

u(t,1) = psi(t)

(5)

phi(1) = psi(0).

(6)

Here, R(x,y;xi,eta) is defined as the solution of the equation

 R_(xy)-(aR)_x-(bR)_y+cR=0

(7)

which satisfies the conditions

R(xi,y;xi,eta) = exp[int_eta^ya(xi,t)dt]

(8)

R(x,eta;xi,eta) = exp[int_xi^xb(t,eta)dt]

(9)

on the characteristics x=xi and y=eta, where (xi,eta) is a point on the domain Omega on which (8) is defined (Hazewinkel 1988). The solution is then given by the Riemann formula

 u(x,y)=int_0^xdxiint_1^yR(xi,eta;x,y)f(xi,eta)deta.

(10)

This method of solution is called the Riemann method.


REFERENCES:

Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, pp. 144-145, 1996.

Hazewinkel, M. (Managing Ed.). Encyclopaedia of Mathematics: An Updated and Annotated Translation of the Soviet "Mathematical Encyclopaedia." Dordrecht, Netherlands: Reidel, Vol. 4, p. 289 and Vol. 8, p. 125, 1988.

Knuth, D. E. The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, 3rd ed. Reading, MA: Addison-Wesley, 1998.

Riemann, B. "Über die Darstellbarkeit einer Function durch eine trigonometrische Reihe." Reprinted in Gesammelte math. Abhandlungen. New York: Dover, pp. 227-264, 1957.

EN

تصفح الموقع بالشكل العمودي