تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Riemann Function
المؤلف:
Conway, J. H. and Guy, R. K
المصدر:
The Book of Numbers. New York: Springer-Verlag
الجزء والصفحة:
...
27-8-2020
849
There are a number of functions in various branches of mathematics known as Riemann functions. Examples include the Riemann P-series, Riemann-Siegel functions, Riemann theta function, Riemann zeta function, xi-function, the function obtained by Riemann in studying Fourier series, the function
appearing in the application of the Riemann method for solving the Goursat problem, the Riemann prime counting function
, and the related the function
obtained by replacing
with
in the Möbius inversion formula.
The Riemann function for a Fourier series
![]() |
(1) |
is obtained by integrating twice term by term to obtain
![]() |
(2) |
where and
are constants (Riemann 1957; Hazewinkel 1988, vol. 8, p. 118).
The Riemann function arises in the solution of the linear case of the Goursat problem of solving the hyperbolic partial differential equation
![]() |
(3) |
with boundary conditions
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
Here, is defined as the solution of the equation
![]() |
(7) |
which satisfies the conditions
![]() |
![]() |
![]() |
(8) |
![]() |
![]() |
![]() |
(9) |
on the characteristics and
, where
is a point on the domain
on which (8) is defined (Hazewinkel 1988). The solution is then given by the Riemann formula
![]() |
(10) |
This method of solution is called the Riemann method.
REFERENCES:
Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, pp. 144-145, 1996.
Hazewinkel, M. (Managing Ed.). Encyclopaedia of Mathematics: An Updated and Annotated Translation of the Soviet "Mathematical Encyclopaedia." Dordrecht, Netherlands: Reidel, Vol. 4, p. 289 and Vol. 8, p. 125, 1988.
Knuth, D. E. The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, 3rd ed. Reading, MA: Addison-Wesley, 1998.
Riemann, B. "Über die Darstellbarkeit einer Function durch eine trigonometrische Reihe." Reprinted in Gesammelte math. Abhandlungen. New York: Dover, pp. 227-264, 1957.