تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Möbius Function
المؤلف:
Abramowitz, M. and Stegun, I. A. (Eds.)
المصدر:
The Möbius Function." §24.3.1 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover
الجزء والصفحة:
...
18-8-2020
2101
The Möbius function is a number theoretic function defined by
(1) |
so indicates that
is squarefree (Havil 2003, p. 208). The first few values of
are therefore 1,
,
, 0,
, 1,
, 0, 0, 1,
, 0, ... (OEIS A008683). Similarly, the first few values of
for
, 2, ... are 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, ... (OEIS A008966).
The function was introduced by Möbius (1832), and the notation was first used by Mertens (1874). However, Gauss considered the Möbius function more than 30 years before Möbius, writing "The sum of all primitive roots [of a prime number
] is either
(when
is divisible by a square), or
(mod
) (when
is the product of unequal prime numbers; if the number of these is even the sign is positive but if the number is odd, the sign is negative)" (Gauss 1801, Pegg 2003).
The Möbius function is implemented in the Wolfram Language as MoebiusMu[n].
The summatory function of the Möbius function
![]() |
(2) |
is called the Mertens function.
The following table gives the first few values of for
, 0, and 1. The values of the first
integers are plotted above on a
grid, where values of
with
are shown in red,
are shown in black, and
are shown in blue. Clear patterns emerge where multiples of numbers each share one or more repeated factor.
![]() |
OEIS | values of ![]() |
![]() |
A030059 | 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 30, ... |
0 | A013929 | 4, 8, 9, 12, 16, 18, 20, 24, 25, 27, 28, ... |
1 | A030229 | 1, 6, 10, 14, 15, 21, 22, 26, ... |
The Möbius function has generating functions
![]() |
(3) |
for (Nagell 1951, p. 130). This product follows by taking one over the Euler product and expanding the terms to obtain
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
![]() |
![]() |
![]() |
(7) |
![]() |
![]() |
![]() |
(8) |
(Derbyshire 2004, pp. 245-249).
An additional generating function is given by
![]() |
(9) |
for . It also obeys the infinite sums
![]() |
![]() |
![]() |
(10) |
![]() |
![]() |
![]() |
(11) |
![]() |
![]() |
![]() |
(12) |
![]() |
![]() |
(13) |
|
![]() |
![]() |
(14) |
(OEIS A082020, A088245, and A088245; Havil 2003, p. 208), as well as the divisor sum
![]() |
(15) |
where is the number of distinct prime factors of
(Hardy and Wright 1979, p. 235).
also satisfies the infinite product
![]() |
(16) |
for (Bellman 1943; Buck 1944;, Pólya and Szegö 1976, p. 126; Robbins 1999). Equation (◇) is as "deep" as the prime number theorem (Landau 1909, pp. 567-574; Landau 1911; Hardy 1999, p. 24).
The Möbius function is multiplicative,
(17) |
and satisfies
![]() |
(18) |
where is the Kronecker delta, as well as
![]() |
(19) |
where is the number of divisors (i.e., divisor function of order zero; Nagell 1951, p. 281).
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). "The Möbius Function." §24.3.1 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, p. 826, 1972.
Bellman, R. "Problem 4072." Amer. Math. Monthly 50, 124-125, 1943.
Buck, R. C. "Solution to Problem 4072." Amer. Math. Monthly 51, 410, 1944.
Derbyshire, J. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. New York: Penguin, pp. 245-250, 2004.
Gauss, C. F. §81 in Disquisitiones Arithmeticae. Leipzig, Germany, 1801. Translated by A. A. Clarke. New Haven, CT: Yale University Press, 1965.
Hardy, G. H. "A Note on the Möbius Function." §4.9 in Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea, pp. 64-65, 1999.
Hardy, G. H. and Wright, E. M. An Introduction to the Theory of Numbers, 5th ed. Oxford: Clarendon Press, p. 236, 1979.
Havil, J. Gamma: Exploring Euler's Constant. Princeton, NJ: Princeton University Press, 2003.
Landau, E. Handbuch der Lehre von der Verteilung der Primzahlen. Leipzig, Germany: Teubner, 1909.
Landau, E. Prac. Matematyczno-Fizycznych 21, 97-177, 1910.
Landau, E. Wiener Sitzungsber. 120, 973-988, 1911.
Mertens, F. "Über einige asymptotische Gesetze der Zahlentheorie." J. reine angew. Math. 77, 46-62, 1874.
Miller, J. "Earliest Uses of Symbols of Number Theory." https://members.aol.com/jeff570/nth.html.
Möbius, A. F. "Über eine besondere Art von Umkehrung der Reihen." J. reine angew. Math. 9, 105-123, 1832.
Nagell, T. Introduction to Number Theory. New York: Wiley, p. 27, 1951.
Pegg, E. Jr. "Math Games: The Möbius Function (and Squarefree Numbers)." Nov. 3, 2003. https://www.maa.org/editorial/mathgames/mathgames_11_03_03.html.
Pólya, G. and Szegö, G. Problems and Theorems in Analysis, Vol. 2. New York: Springer-Verlag, 1976.
Robbins, N. "Some Identities Connecting Partition Functions to Other Number Theoretic Functions." Rocky Mtn. J. Math. 29, 335-345, 1999.
Rota, G.-C. "On the Foundations of Combinatorial Theory I. Theory of Möbius Functions." Z. für Wahrscheinlichkeitsth. 2, 340-368, 1964.
Séroul, R. "The Moebius Function." §2.12 and 8.5 in Programming for Mathematicians. Berlin: Springer-Verlag, pp. 19-21 and 167-169, 2000.
Sloane, N. J. A. Sequences A008683, A008966, A013929, A030059, A030229, A082020, A88245, and A88246 in "The On-Line Encyclopedia of Integer Sequences."
Vardi, I. Computational Recreations in Mathematica. Redwood City, CA: Addison-Wesley, pp. 7-8 and 223-225, 1991.
Wilf, H. Generatingfunctionology, 2nd ed. New York: Academic Press, p. 61, 1994.