تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Sierpiński Number of the Second Kind
المؤلف:
Ballinger, R.
المصدر:
"The Sierpinski Problem: Definition and Status." https://www.prothsearch.net/sierp.html
الجزء والصفحة:
...
7-8-2020
826
A Sierpiński number of the second kind is a number satisfying Sierpiński's composite number theorem, i.e., a Proth number
such that
is composite for every
.
The smallest known example is , proved in 1962 by J. Selfridge, but the fate of a number of smaller candidates remains to be determined before this number can be established as the smallest such number. As of 1996, 35 candidates remained (Ribenboim 1996, p. 358), a number which had been reduced to 17 by the beginning of 2002 (Peterson 2003).
In March 2002, L. K. Helm and D. A. Norris began a distributed computing effort dubbed "seventeen or bust" to eliminate the remaining candidates. With the aid of collaborators across the globe, this number was reduced to 12 as of December 2003 (Peterson 2003, Helm and Norris). The following table summarizes numbers subsequently found to be prime by "seventeen or bust," leaving only five candidates remaining as of November 2016.
date | participant | number |
Dec. 6, 2003 | ![]() |
|
Jun. 8, 2005 | D. Gordon | ![]() |
Oct. 15, 2005 | R. Hassler | ![]() |
May 5, 2007 | K. Agafonov | ![]() |
Oct. 30, 2007 | S. Sunde | ![]() |
Nov. 6, 2016 | P. Szabolcs | ![]() |
The following table lists the known primes together with the only remaining candidates which, as Jan. 2008, are the six numbers 10223, 21181, 22699, 24737, 55459, and 67607. A list of primes found by the project is also maintained by Caldwell (https://primes.utm.edu/bios/page.php?id=429).
![]() |
prime | digits | Caldwell |
4847 | ![]() |
999744 | https://primes.utm.edu/primes/page.php?id=75994 |
5359 | ![]() |
1521561 | https://primes.utm.edu/primes/page.php?id=67719 |
10223 | ![]() |
9383761 | https://primes.utm.edu/primes/page.php?id=122473 |
19249 | ![]() |
3918990 | https://primes.utm.edu/primes/page.php?id=80385 |
21181 | |||
22699 | |||
24737 | |||
27653 | ![]() |
2759677 | https://primes.utm.edu/primes/page.php?id=74836 |
28433 | ![]() |
2357207 | https://primes.utm.edu/primes/page.php?id=73145 |
33661 | ![]() |
2116617 | https://primes.utm.edu/primes/page.php?id=82804 |
44131 | ![]() |
299823 | https://primes.utm.edu/primes/page.php?id=62867 |
46157 | ![]() |
210186 | https://primes.utm.edu/primes/page.php?id=62865 |
54767 | ![]() |
402569 | https://primes.utm.edu/primes/page.php?id=62869 |
55459 | |||
65567 | ![]() |
305190 | https://primes.utm.edu/primes/page.php?id=62866 |
67607 | |||
69109 | ![]() |
348431 | https://primes.utm.edu/primes/page.php?id=62868 |
Consider now restricting Sierpiński numbers of the second kind to those with prime . The smallest proved prime Sierpiński number is 271129. A distributed computing project to find examples of
that are prime with
smaller than the proven lower limit is currently underway (Caldwell). Note that the smallest candidates include three prime candidates from the "seventeen or bust" list: 10223, 22699, 67607. A list of primes found by the project is maintained by Caldwell (https://primes.utm.edu/bios/page.php?id=564).
Let be smallest
for which
is prime, then the first few values are 0, 1, 1, 2, 1, 1, 2, 1, 3, 6, 1, 1, 2, 2, 1, 8, 1, 1, 2, 1, 1, 2, 2, 583, ... (OEIS A046067). The second smallest
are given by 1, 2, 3, 4, 2, 3, 8, 2, 15, 10, 4, 9, 4, 4, 3, 60, 6, 3, 4, 2, 11, 6, 9, 1483, ... (OEIS A046068). Quite large
can be required to obtain the first prime even for small
. For example, the smallest prime of the form
is
.
There are an infinite number of Sierpiński numbers which are prime.
The smallest odd such that
is composite for all
are 773, 2131, 2491, 4471, 5101, ... (OEIS A033919).
is always composite for
and Gaussian integers
,
, and
. (E. Pegg Jr., pers. comm., Feb. 6, 2003; Broadhurst 2005).
REFERENCES:
Baillie, R.; Cormack, G.; and Williams, H. C. "The Problem of Sierpinski Concerning ." Math. Comput. 37, 229-231, 1981.
Ballinger, R. "The Sierpinski Problem: Definition and Status." https://www.prothsearch.net/sierp.html.
Broadhurst, D. "Might Jean Complexify SoB?" primeform group posting. Oct. 30, 2005. https://groups.yahoo.com/group/primeform/message/6620/.
Caldwell, C. "The Prime Sierpinski Problem." https://primes.utm.edu/bios/page.php?id=564.
Caldwell, C. "Seventeen or Bust." https://primes.utm.edu/bios/page.php?id=429.
Buell, D. A. and Young, J. "Some Large Primes and the Sierpiński Problem." SRC Tech. Rep. 88004, Supercomputing Research Center, Lanham, MD, 1988.
Helm, L. Press release upon discovery of . June 15, 2005. https://www.seventeenorbust.com/documents/press-061505.mhtml.
Helm, L. Press release upon discovery of . May 5, 2007. https://www.seventeenorbust.com/documents/press-050507.mhtml.
Helm, L. and Norris, D. "Seventeen or Bust: A Distributed Attack on the Sierpinski Problem." https://www.seventeenorbust.com/.
Helm, L. and Norris, D. "Seventeen or Bust: A Distributed Attack on the Sierpinski Problem--Project Statistics." https://www.seventeenorbust.com/stats/.
Jaeschke, G. "On the Smallest such that
are Composite." Math. Comput. 40, 381-384, 1983.
Jaeschke, G. Corrigendum to "On the Smallest such that
are Composite." Math. Comput. 45, 637, 1985.
Keller, W. "Factors of Fermat Numbers and Large Primes of the Form ." Math. Comput. 41, 661-673, 1983.
Keller, W. "Factors of Fermat Numbers and Large Primes of the Form , II." In prep.
Peterson, I. "MathTrek: A Remarkable Dearth of Primes." Jan. 13, 2003. https://www.sciencenews.org/20030111/mathtrek.asp.
"The Prime Sierpinski Project." https://www.mersenneforum.org/showthread.php?t=2665.
Ribenboim, P. The New Book of Prime Number Records. New York: Springer-Verlag, pp. 357-359, 1996.
Sierpiński, W. "Sur un problème concernant les nombres ." Elem. d. Math. 15, 73-74, 1960.
Sloane, N. J. A. Sequences A033919, A046067, and A046068 in "The On-Line Encyclopedia of Integer Sequences."