1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية الاعداد :

LLL Algorithm

المؤلف:  Borwein, J. and Bailey, D.

المصدر:  Mathematics by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A K Peters

الجزء والصفحة:  ...

20-7-2020

2462

LLL Algorithm

A lattice reduction algorithm, named after discoverers Lenstra, Lenstra, and Lovasz (1982), that produces a lattice basis of "short" vectors. It was noticed by Lenstra et al. (1982) that the algorithm could be used to obtain factors of univariate polynomials, which amounts to the determination of integer relations. However, this application of the algorithm, which later came to be one of its primary applications, was not stressed in the original paper.

For a complexity analysis of the LLL algorithm, see Storjohann (1996).

The Wolfram Language command LatticeReduce[matrix] implements the LLL algorithm to perform lattice reduction. The Wolfram Language's implementation requires the input to consist of rational numbers, so Rationalize may need to be called first.

More recently, other algorithms such as PSLQ, which can be significant faster than LLL, have been developed for finding integer relations. PSLQ achieves its performance because of clever techniques that allow machine arithmetic to be used at many intermediate steps, whereas LLL must use moderate precision (although generally not as much as the HJLS algorithm).


REFERENCES:

Bailey, D. H.; Borwein, J. M.; Calkin, N. J.; Girgensohn, R.; Luke, D. R.; and Moll, V. H. "Integer Relation Detection." §2.2 in Experimental Mathematics in Action. Wellesley, MA: A K Peters, pp. 29-31, 2007.

Borwein, J. and Bailey, D. Mathematics by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A K Peters, pp. 51-52, 2003.

Borwein, J. M. and Corless, R. M. "Emerging Tools for Experimental Mathematics." Amer. Math. Monthly 106, 899-909, 1999.

Borwein, J. M. and Lisonek, P. "Applications of Integer Relation Algorithms." Disc. Math. 217, 65-82, 2000.

Centre for Experimental & Constructive Mathematics. "Integer Relations." https://www.cecm.sfu.ca/projects/IntegerRelations/.

Cohen, H. A Course in Computational Algebraic Number Theory. New York: Springer-Verlag, 1993.

Lenstra, A. K.; Lenstra, H. W.; and Lovasz, L. "Factoring Polynomials with Rational Coefficients." Math. Ann. 261, 515-534, 1982.

Matthews, K. "Keith Matthews' LLL Page." https://www.numbertheory.org/lll.html.

Mignotte, M. Mathematics for Computer Algebra. New York: Springer-Verlag, 1991.

Storjohann, A. "Faster Algorithms for Integer Lattice Basis Reduction." Technical Report 249. Zurich, Switzerland: Department Informatik, ETH. July 30, 1996.

Zimmerman, P. "LLL Using Exact Multiprecision Arithmetic.." https://www.loria.fr/~zimmerma/free/lll.c.

EN

تصفح الموقع بالشكل العمودي