تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Subset Sum Problem
المؤلف:
Borwein, J. and Bailey, D
المصدر:
Mathematics by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A K Peters
الجزء والصفحة:
...
18-7-2020
2455
There are two problems commonly known as the subset sum problem.
The first ("given sum problem") is the problem of finding what subset of a list of integers has a given sum, which is an integer relation problem where the relation coefficients are 0 or 1.
The ("same sum problem") is the problem of finding a set of distinct positive real numbers with as large a collection as possible of subsets with the same sum (Proctor 1982).
The same sum problem was solved by Stanley (1980) using the tools of algebraic geometry, with the answer given for numbers by the first
positive integers:
{1,2,...,n}" src="https://mathworld.wolfram.com/images/equations/SubsetSumProblem/Inline5.gif" style="height:15px; width:69px" />. Proctor (1982) gave the first elementary proof of this result. The maximal numbers of subsets of
{1,2,...,n}" src="https://mathworld.wolfram.com/images/equations/SubsetSumProblem/Inline6.gif" style="height:15px; width:69px" /> having the same sum for
, 2, ... are 1, 1, 2, 2, 3, 5, 8, 14, 23, ... (OEIS A025591). Similarly, the numbers of different subset sums for
, 2, ... are 2, 4, 7, 11, 16, 22, 29, 37, 46, 56, ... (OEIS A000124). For example, for
, the subsets of
{1,2,3}" src="https://mathworld.wolfram.com/images/equations/SubsetSumProblem/Inline10.gif" style="height:15px; width:47px" /> are
![]() |
![]() |
![]() |
(1) |
![]() |
![]() |
![]() |
(2) |
![]() |
![]() |
![]() |
(3) |
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
![]() |
![]() |
![]() |
(7) |
![]() |
![]() |
![]() |
(8) |
so the sum appearing most often is 3, which occurs twice, and the number of different sums is 7.
The given sum problem is NP-complete. For small cases, it be solved using generating functions. Consider the number of ways to select
out of
given integers
{a_1,...,a_M}" src="https://mathworld.wolfram.com/images/equations/SubsetSumProblem/Inline38.gif" style="height:15px; width:71px" /> such that their sum equals
, and define the generating function
![]() |
(9) |
Upon expanding in powers of , this becomes
![]() |
(10) |
But as a result of the exponent law ,
is precisely the desired generating function
![]() |
(11) |
For example, consider the problem of picking objects from the set
{1,2,3,4,5}" src="https://mathworld.wolfram.com/images/equations/SubsetSumProblem/Inline44.gif" style="height:15px; width:77px" />. The generating function
is
![]() |
(12) |
So, for example, selecting objects has the generating function
![]() |
![]() |
![]() |
(13) |
![]() |
![]() |
![]() |
(14) |
so the number of ways of picking three of the integers 1 through 5 and having them sum to , 11, ..., 6 are the coefficients
of
, namely 1, 1, 2, 2, 2, 1, and 1. These solutions are summarized in the following table.
![]() |
solutions |
6 | (1, 2, 3) |
7 | (1, 2, 4) |
8 | (1, 2, 5), (1, 3, 4) |
9 | (1, 3, 5), (2, 3, 4) |
10 | (1, 4, 5), (2, 3, 5) |
11 | (2, 4, 5) |
12 | (3, 4, 5) |
A nice explicit example original proposed by Pólya (1956) asks for the number of ways to make change from an American dollar (using pennies, nickels, dimes, quarters, and half-dollars). The answer of 292 is provided as the coefficient of the term in the series
![]() |
(15) |
(Borwein and Bailey 2003, p. 21).
REFERENCES:
Borwein, J. and Bailey, D. Mathematics by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A K Peters, pp. 22-24, 2003.
Coster, M. J.; LaMacchia, B. A.; Odlyzko, A. M.; and Schnorr, C. P. "An Improved Low-Density Subset Sum Algorithm." In Advances in Cryptology: EUROCRYPT '91 (Brighton, 1999) (Ed. D. W. Davis). New York: Springer-Verlag, pp. 54-67, 1992.
Coster, M. J.; Joux, A.; LaMacchia, B. A.; Odlyzko, A. M.; Schnorr, C. P.; and Stern, J. "Improved Low-Density Subset Sum Algorithms." Comput. Complex. 2, 111-128, 1992.
Ferguson, H. R. P. and Bailey, D. H. "A Polynomial Time, Numerically Stable Integer Relation Algorithm." RNR Techn. Rept. RNR-91-032, Jul. 14, 1992.
Lagarias, L. C. and Odlyzko, A. M. "Solving Low-Density Subset Sum Problems." J. ACM 32, 229-246, 1985.
Pólya, G. "On Picture-Writing." Amer. Math. Monthly 63, 689-697, 1956.
Proctor, R. A. "Solution of Two Difficult Combinatorial Problems with Linear Algebra." Amer. Math. Monthly 89, 721-734, 1982.
Schnorr, C. P. and Euchner, M. "Lattice Basis Reduction: Improved Practical Algorithms and Solving Subset Sum Problems." In Fundamentals of Computation Theory: Proceedings of the 8th International Conference, Fct '91 Gosen, Germany, September 9-13, 1991. Berlin: Springer-Verlag, pp. 68-85, 1991.
Sloane, N. J. A. Sequences A000124/M1041 and A025591 in "The On-Line Encyclopedia of Integer Sequences."
Stanley, R. P. "Weyl Groups, the Hard Lefschetz Theorem, and the Sperner Property." SIAM J. Alg. Disc. Math. 1, 168-184, 1980.