1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية الاعداد :

Rational Distance Problem

المؤلف:  Guy, R. K.

المصدر:  "Rational Distances from the Corner of a Square." §D19 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag

الجزء والصفحة:  pp. 181-185

9-6-2020

1060

Rational Distance Problem

The rational distance problem asks to find a geometric configuration satisfying given properties such that all distances along specific edges are rational numbers. (This is equivalent to having all edge lengths be integers, since the denominators of rational numbers can be cleared by multiplication.)

A cuboid whose edges and face diagonals are integers is called an Euler brick. It is not known if there exists a point in a unit square all of whose distances from the corners are rational, although J. H. Conway and M. Guy found an infinite numbers of solutions to the problem of three such distances being integers, which involves solving

 (s^2+b^2-a^2)^2+(s^2+b^2-c^2)^2=(2bs)^2,

where ab, and c are the three distances and s is the side length of the square (Guy 1994, p. 181). There are infinitely many solutions of the corresponding problem of integer distances from the corners of an equilateral triangle (Guy 1994, p. 183).

RationalDistanceTriangle

In 2001, E. Pegg found a small scalene triangle with side lengths 8, 22, and 19 possessing an internal point with distances 17, 6, and 4 from the respective vertices. This is equivalent to finding an integers-only solution of the equation for the six distances between vertices of a quadrilateral.


REFERENCES:

Guy, R. K. "Rational Distances from the Corner of a Square." §D19 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 181-185, 1994.

EN

تصفح الموقع بالشكل العمودي