1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية الاعداد :

Mordell Conjecture

المؤلف:  Bombieri, E.

المصدر:  "The Mordell Conjecture Revisited." Ann. Scuola Norm. Sup. Pisa Cl. Sci. 17

الجزء والصفحة:  ...

3-6-2020

1411

Mordell Conjecture

The Mordell conjecture states that Diophantine equations that give rise to surfaces with two or more holes have only finite many solutions in Gaussian integers with no common factors (Mordell 1922). Fermat's equation has (n-1)(n-2)/2 holes, so the Mordell conjecture implies that for each integer n>=3, the Fermat equation has at most a finite number of solutions.

This conjecture was proved by Faltings (1984) and hence is now also known as Falting's theorem.


REFERENCES:

Bombieri, E. "The Mordell Conjecture Revisited." Ann. Scuola Norm. Sup. Pisa Cl. Sci. 17, 615-640, 1990.

Cornell, G. and Silverman, J. H. Arithmetic Geometry. New York: Springer, 1986.

Elkies, N. D. "ABC Implies Mordell." Internat. Math. Res. Not. 7, 99-109, 1991.

Faltings, G. "Endlichkeitssätze für abelsche Varietäten über Zahlkörpern." Invent. Math. 73, 349-366, 1983.

Faltings, G. "Die Vermutungen von Tate und Mordell." Jahresber. Deutsch. Math.-Verein 86, 1-13, 1984.

Hindry, M. and Silverman, J. H. Diophantine Geometry. New York: Springer, 2000.

Ireland, K. and Rosen, M. "The Mordell Conjecture." §20.3 in A Classical Introduction to Modern Number Theory, 2nd ed. New York: Springer-Verlag, pp. 340-342, 1990.

Mordell, L. J. "On the Rational Solutions of the Indeterminate Equation of the Third and Fourth Degrees." Proc. Cambridge Philos. Soc. 21, 179-192, 1922.

van Frankenhuysen, M. "The ABC Conjecture Implies Roth's Theorem and Mordell's Conjecture." Mat. Contemp. 16, 45-72, 1999.

EN

تصفح الموقع بالشكل العمودي