1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية الاعداد :

Lagrange Number

المؤلف:  Conway, J. H. and Guy, R. K.

المصدر:  The Book of Numbers. New York: Springer-Verlag

الجزء والصفحة:  ...

1-6-2020

1065

Lagrange Number

There are two distinct entities both known as the Lagrange number. The more common one arises in rational approximation theory (Conway and Guy 1996), while the other refers to solutions of a particular Diophantine equation (Dörrie 1965).

Hurwitz's irrational number theorem gives the best rational approximation possible for an arbitrary irrational number alpha as

 |alpha-p/q|<1/(L_nq^2).

(1)

The L_n are called Lagrange numbers, and get steadily larger for each "bad" set of irrational numbers which is excluded, as indicated in the following table.

n exclude L_n
1 none sqrt(5)
2 phi sqrt(8)
3 sqrt(2) (sqrt(221))/5

Lagrange numbers are of the form

 sqrt(9-4/(m^2)),

(2)

where m is a Markov number. The Lagrange numbers form a spectrum called the Lagrange spectrum.

Given a Pell equation (a quadratic Diophantine equation)

 x^2-r^2y^2=4

(3)

with r a quadratic surd, define

 z=1/2(x+yr).

(4)

for each solution with x|y. The numbers z are then known as Lagrange numbers (Dörrie 1965). The product and quotient of two Lagrange numbers are also Lagrange numbers. Furthermore, every Lagrange number is a power of the smallest Lagrange number with an integer exponent.


REFERENCES:

Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, pp. 187-189, 1996.

Dörrie, H. 100 Great Problems of Elementary Mathematics: Their History and Solutions. New York: Dover, pp. 94-95, 1965.

EN

تصفح الموقع بالشكل العمودي