تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Champernowne Constant Continued Fraction
المؤلف:
Havermann, H.
المصدر:
"Numbers of Digits in Some Champernowne-Continued-Fraction Terms." https://odo.ca/~haha/cfcd.html.
الجزء والصفحة:
...
28-4-2020
1168
Champernowne Constant Continued Fraction
The first few terms in the continued fraction of the Champernowne constant are [0; 8, 9, 1, 149083, 1, 1, 1, 4, 1, 1, 1, 3, 4, 1, 1, 1, 15, 45754...10987, 6, 1, 1, 21, ...] (OEIS A030167), and the number of decimal digits in these terms are 0, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 166, 1, ... (OEIS A143532). E. W. Weisstein computed terms of the continued fraction on Jun. 30, 2013 using the Wolfram Language.
First occurrences of the terms 1, 2, 3, ... in the continued fraction occur at
, 28, 13, 9, 93, 20, 31, 2, 3, 339, 71, 126, 107, ... (OEIS A038706). The smallest unknown value is 188, which has
.
The continued fraction contains sporadic very large terms, making the continued fraction difficult to calculate. However, the size of the continued fraction high-water marks display apparent patterns (Sikora 2012). Large terms greater than occur at positions 5, 19, 41, 102, 163, 247, 358, 460, ... and have 6, 166, 2504, 140, 33102, 109, 2468, 136, ... digits, respectively.
The high-water marks in terms of the continued fraction occur for terms 0, 1, 2, 4, 18, 40, 162, 526, 1708, 4838, 13522, 34062, ... (OEIS A143533; Sikora 2012), which have 0, 1, 1, 6, 166, 2504, 33102, 411100, 4911098, 57111096, 651111094, 7311111092, ... (OEIS A143534; Sikora 2012) decimal digits, respectively. Sikora (2012) conjectured that the number of decimal digits in the th high-water mark for
are given by
![]() |
(1) |
where
![]() |
![]() |
![]() |
(2) |
![]() |
![]() |
![]() |
(3) |
in agreement with known calculated values up to .
REFERENCES:
Havermann, H. "Numbers of Digits in Some Champernowne-Continued-Fraction Terms." https://odo.ca/~haha/cfcd.html.
Rytin, M. "Champernowne Constant and Its Continued Fraction Expansion." https://library.wolfram.com/infocenter/MathSource/2876/.
Sikora, J. K. "On the High Water Mark Convergents of Champernowne's Constant in Base Ten." 3 Oct 2012. https://arxiv.org/abs/1210.1263.
Sloane, N. J. A. Sequences A030167, A030190, A033307, A038706, A054635, A058935, A066716, A066717, A077771, A077772, A143532, A143533, and A143534 in "The On-Line Encyclopedia of Integer Sequences."
الاكثر قراءة في نظرية الاعداد
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
