1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية الاعداد :

Grossman,s Constant

المؤلف:  Ewing, J. and Foias, C

المصدر:  "An Interesting Serendipitous Real Number." In Finite versus Infinite: Contributions to an Eternal Dilemma (Ed. C. Caluse and G. Păun). London: Springer-Verlag

الجزء والصفحة:  ...

25-3-2020

840

Grossman's Constant

GrossmansConstant

Define the sequence a_0=1a_1=x, and

 a_n=(a_(n-2))/(1+a_(n-1))

(1)

for n>=0. The first few values are

a_2 = 1/(1+x)

(2)

a_3 = (x(1+x))/(2+x)

(3)

a_4 = (2+x)/((1+x)(2+2x+x^2))

(4)

a_5 = (x(1+x)^2(2+2x+x^2))/((2+x)(4+5x+3x^2+x^3)).

(5)

Janssen and Tjaden (1987) showed that this sequence converges for exactly one value x=c, where c=0.73733830336929... (OEIS A085835), confirming Grossman's conjecture. However, no analytic form is known for this constant, either as the root of a function or as a combination of other constants. The plot above shows the first few iterations of a_n for n=1 to 30, with odd n shown in red and even n shown in blue, for x ranging from 0 to 1. As can be seen, the solutions alternate by parity. For each fixed x<c, the red values go to 0, while the blue values go to some positive number.

Nyerges (2000) has generalized the recurrence to the functional equation

 x=[1+F(x)]F^2(x).

(6)


REFERENCES:

Ewing, J. and Foias, C. "An Interesting Serendipitous Real Number." In Finite versus Infinite: Contributions to an Eternal Dilemma (Ed. C. Caluse and G. Păun). London: Springer-Verlag, pp. 119-126, 2000.

Finch, S. R. "Grossman's Constant." §6.4 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 429-430, 2003.

Grossman, J. W. "Problem 86-2." Math. Intel. 8, 31, 1986.

Janssen, A. J. E. M. and Tjaden, D. L. A. Solution to Problem 86-2. Math. Intel. 9, 40-43, 1987.

Michon, G. P. "Final Answers: Numerical Constants." http://home.att.net/~numericana/answer/constants.htm#grossman.

Nyerges, G. "The Solution of the Functional Equation x=(1+F(x))F^2(x)." Preprint, Oct. 19, 2000. http://eent3.sbu.ac.uk/Staff/nyergeg/www/etc/fneq.pdf.

Sloane, N. J. A. Sequence A085835 in "The On-Line Encyclopedia of Integer Sequences."

EN

تصفح الموقع بالشكل العمودي