x
هدف البحث
بحث في العناوين
بحث في اسماء الكتب
بحث في اسماء المؤلفين
اختر القسم
موافق
تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Pi Continued Fraction
المؤلف: Ball, W. W. R. and Coxeter, H. S. M
المصدر: Mathematical Recreations and Essays, 13th ed. New York: Dover,
الجزء والصفحة: ...
9-3-2020
1491
The simple continued fraction for pi is given by [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, ...] (OEIS A001203). A plot of the first 256 terms of the continued fraction represented as a sequence of binary bits is shown above.
The first few convergents are 3, 22/7, 333/106, 355/113, 103993/33102, 104348/33215, ... (OEIS A002485 and A002486), which are good to 0, 2, 4, 6, 9, 9, 9, 10, 11, 11, 12, 13, ... (OEIS A114526) decimal digits, respectively.
The very large term 292 means that the convergent
(1) |
is an extremely good approximation good to six decimal places that was first discovered by astronomer Tsu Ch'ung-Chih in the fifth century A.D. (Gardner 1966, pp. 91-102). A nice expression for the third convergent of is given by
(2) |
(Stoschek).
The Engel expansion of is 1, 1, 1, 8, 8, 17, 19, 300, 1991, 2492, ... (OEIS A006784).
The following table summarizes some record computations of the continued fraction of pi.
terms | date | reference |
1977 | W. Gosper (Gosper 1977, Ball and Coxeter 1987) | |
Jun. 1999 | H. Havermann (Plouffe) | |
Mar. 2002 | H. Havermann (Bickford) | |
Oct. 2010 | N. Bickford (Bickford 2010, Wolfram Blog Team 2011) | |
Dec. 2010 | E. W. Weisstein | |
Sep. 16, 2011 | E. W. Weisstein | |
Sep. 17, 2011 | E. W. Weisstein | |
Sep. 18, 2011 | E. W. Weisstein | |
Jul. 18, 2013 | E. W. Weisstein | |
Jul. 27, 2013 | E. W. Weisstein |
The positions of the first occurrence of , 2, ... in the continued fraction are 3, 8, 0, 29, 39, 31, 1, 43, 129, 99, ... (OEIS A225802). The smallest integers which does not occur in the first terms are 49004, 50471, 53486, 56315, ... (E. Weisstein, Jul. 27, 2013). The sequence of increasing terms in the continued fraction is 3, 7, 15, 292, 436, 20776, 78629, 179136, 528210, 12996958, 878783625, 5408240597, 5916686112, 9448623833, ... (OEIS A033089), occurring at positions 1, 2, 3, 5, 308, 432, 28422, 156382, 267314, 453294, 11504931 ... (OEIS A033090)
Let the continued fraction of be denoted and let the denominators of the convergents be denoted , , ..., . Then plots above show successive values of , , , which appear to converge to Khinchin's constant (left figure) and , which appear converge to the Lévy constant (right figure), although neither of these limits has been rigorously established.
The following table gives the first few occurrences of -digit terms in the continued fraction of , counting 3 as the 0th (e.g., Choong et al. 1971, Beeler et al. 1972).
OEIS | terms/positions | |
1 | A048292 | 3, 7, 1, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 2, ... |
A048293 | 0, 1, 3, 5, 6, 7, 8, 9, 10, 11, 13, 14, ... | |
2 | A048294 | 15, 14, 84, 15, 13, 99, 12, 16, 45, 22, ... |
A048955 | 2, 12, 21, 25, 27, 33, 54, 77, 80, 82, ... | |
3 | A048956 | 292, 161, 120, 127, 436, 106, 141, ... |
A048957 | 4, 79, 196, 222, 307, 601, 669, 725, ... | |
4 | A048958 | 1722, 2159, 8277, 1431, 1282, 2050, ... |
A048959 | 3273, 3777, 3811, 4019, 4700, 6209, ... | |
5 | A048960 | 20776, 19055, 19308, 78629, 17538, ... |
A048961 | 431, 15543, 23398, 28421, 51839, ... | |
6 | 179136, 528210, 104293, 196030, ... | |
156381, 267313, 294467, 513205, ... | ||
7 | 8093211, 1811791, 3578547, 4506503, ... | |
1118727, 2782369, 2899883, 3014261, ... | ||
8 | 12996958 ,19626118, 12051Q034, 13435395, ... | |
453293, 27741604, 46924606, 50964645, ... | ||
9 | 878783625, 317579569, ... | |
11504930, 74130513, ... |
The simple continued fraction for does not show any obvious patterns, but clear patterns do emerge in the beautiful non-simple continued fractions
(3) |
(Brouncker), giving convergents 1, 3/2, 15/13, 105/76, 315/263, ... (OEIS A025547 and A007509) and
(4) |
(Stern 1833), giving convergents 1, 2/3, 4/3, 16/15, 64/45, 128/105, ... (OEIS A001901 and A046126).
REFERENCES:
Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recreations and Essays, 13th ed. New York: Dover, p. 55 and 274, 1987.
Beeler, M. et al. Item 140 in Beeler, M.; Gosper, R. W.; and Schroeppel, R. HAKMEM. Cambridge, MA: MIT Artificial Intelligence Laboratory, Memo AIM-239, p. 69, Feb. 1972. http://www.inwap.com/pdp10/hbaker/hakmem/pi.html#item140.
Bickford, N. "Pi." http://nbickford.wordpress.com/2010/10/22/pi/. Oct. 22, 2010.
Choong, Daykin, and Rathbone. Math. Comput. 25, 387, 1971.
Gardner, M. "The Transcendental Number Pi." Ch. 8 in Martin Gardner's New Mathematical Diversions from Scientific American. New York: Simon and Schuster, pp. 91-102, 1966.
Gosper, R. W. Table of Simple Continued Fraction for and the Derived Decimal Approximation. Stanford, CA: Artificial Intelligence Laboratory, Stanford University, Oct. 1975. Reviewed in Math. Comput. 31, 1044, 1977.
Havermann, H. "Simple Continued Fraction Expansion of Pi." http://odo.ca/~haha/cfpi.html.
Lochs, G. "Die ersten 968 Kettenbruchnenner von ." Monatsh. für Math. 67, 311-316, 1963.
Sloane, N. J. A. Sequences 0012032646,A002485/M3097, A002486/M4456, A114526, and A225802 in "The On-Line Encyclopedia of Integer Sequences."
Stoschek, E. "Modul 33: Algames with Numbers." http://marvin.sn.schule.de/~inftreff/modul33/task33.htm.
Wolfram Blog Team. "From Pi to Puzzles." http://blog.wolfram.com/2011/09/15/from-pi-to-puzzles/. Sep. 15, 2011.