

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي


الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية


الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق


الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات


الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل


المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات


التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات


علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان
Gauss-Kuzmin-Wirsing Constant
المؤلف:
Babenko, K. I.
المصدر:
"On a Problem of Gauss." Soviet Math. Dokl. 19
الجزء والصفحة:
...
30-1-2020
2219
Gauss-Kuzmin-Wirsing Constant
Wirsing (1974) showed, among other results, that if
is the Gauss-Kuzmin distribution, then
![]() |
(1) |
where
(OEIS A038517; Knuth 1998, p. 350) and
is an analytic function with
.
was computed to about 30 decimal places by Flajolet and Vallée (1995) and to 100 places by Sebah (unpublished). Briggs (2003) computed
as the negative of the second largest (in absolute value) eigenvalue of the
matrix defined by
![]() |
(2) |
for
, where
is a binomial coefficient,
is a Pochhammer symbol, and
is the Riemann zeta function. For example,
![]() |
(3) |
Briggs (2003) used
and a precision of 1300 bits to obtain 385 digits.
This constant is connected to the efficiency of the Euclidean algorithm. It has continued fraction [0, 3, 3, 2, 2, 3, 13, 1, 174, ...] (OEIS A007515; Knuth 1998, p. 350).
REFERENCES:
Babenko, K. I. "On a Problem of Gauss." Soviet Math. Dokl. 19, 136-140, 1978.
Bailey, D. H.; Borwein, J. M.; and Crandall, R. E. "On the Khintchine Constant." Math. Comput. 66, 417-431, 1997.
Briggs, K. "A Precise Computation of the Gauss-Kuzmin-Wirsing Constant." Preliminary report. 2003 July 8. http://keithbriggs.info/documents/wirsing.pdf.
Daudé, H.; Flajolet, P.; and Vallé, B. "An Average-Case Analysis of the Gaussian Algorithm for Lattice Reduction." Combin. Probab. Comput. 6, 397-433, 1997.
Finch, S. R. "Gauss-Kuzmin-Wirsing Constant." §2.17 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 151-156, 2003.
Flajolet, P. and Vallée, B. "On the Gauss-Kuzmin-Wirsing Constant." Unpublished memo. 1995. http://algo.inria.fr/flajolet/Publications/gauss-kuzmin.ps.
Knuth, D. E. The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, 3rd ed. Reading, MA: Addison-Wesley, p. 341, 1998.
MacLeod, A. J. "High-Accuracy Numerical Values of the Gauss-Kuzmin Continued Fraction Problem." Computers Math. Appl. 26, 37-44, 1993.
Mayer, D. H. "Continued Fractions and Related Transformations." In Ergodic Theory, Symbolic Dynamics and Hyperbolic Spaces. Papers from the Workshop on Hyperbolic Geometry and Ergodic Theory held in Trieste, April 17-28, 1989 (Ed. T. Bedford, M. Keane, and C. Series). New York: Clarendon Press, pp. 175-222, 1991.
Plouffe, S. "The Gauss-Kuzmin-Wirsing Constant." http://pi.lacim.uqam.ca/piDATA/gkw.txt.
Sloane, N. J. A. Sequences A007515/M2267 and A038517 in "The On-Line Encyclopedia of Integer Sequences."
Wirsing, E. "On the Theorem of Gauss-Kuzmin-Lévy and a Frobenius-Type Theorem for Function Spaces." Acta Arith. 24, 507-528, 1974.
الاكثر قراءة في نظرية الاعداد
اخر الاخبار
اخبار العتبة العباسية المقدسة
الآخبار الصحية


![M_(jk)=((-1)^j)/(j!(-2)^k)sum_(i=0)^k(k; i)(-2)^i(i+2)_j[zeta(i+j+2)(2^(i+j+2)-1)-2^(i+j+2)]](http://mathworld.wolfram.com/images/equations/Gauss-Kuzmin-WirsingConstant/NumberedEquation2.gif)
![M_2=[1/2(pi^2-8) 7zeta(3)-1/4pi^2-6; 16-14zeta(3) 7zeta(3)-1/2pi^4+40].](http://mathworld.wolfram.com/images/equations/Gauss-Kuzmin-WirsingConstant/NumberedEquation3.gif)
قسم الشؤون الفكرية يصدر كتاباً يوثق تاريخ السدانة في العتبة العباسية المقدسة
"المهمة".. إصدار قصصي يوثّق القصص الفائزة في مسابقة فتوى الدفاع المقدسة للقصة القصيرة
(نوافذ).. إصدار أدبي يوثق القصص الفائزة في مسابقة الإمام العسكري (عليه السلام)