

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي


الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية


الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق


الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات


الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل


المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات


التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات


علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان
Euler-Mascheroni Constant Digits
المؤلف:
Havil, J.
المصدر:
Gamma: Exploring Euler,s Constant. Princeton, NJ: Princeton University Press, 2003.
الجزء والصفحة:
...
27-1-2020
1197
Euler-Mascheroni Constant Digits
The Euler-Mascheroni constant
(OEIS A001620) was calculated to 16 digits by Euler in 1781 and to 32 decimal places by Mascheroni (1790), although only the first 19 decimal places were correct. It was subsequently computed to 40 correct decimal placed by Soldner in 1809 and verified by Gauss and Nicolai in 1812 (Havil 2003, pp. 89-90). No quadratically converging algorithm for computing
is known (Bailey 1988).
The following table summarizes some record computations.
| decimal digit | date | reference |
| Oct. 1999 | X. Gourdon and P. Demichel (Gourdon and Sebah) | |
| Dec. 8, 2006 | Alexander J. Yee (Yee 2006; United Press International 2007) | |
| ? | S. Kondo | |
| Mar. 13, 2009 | A. Yee |
The Earls sequence (starting position of
copies of the digit
) for
is given for
, 2, ... by 5, 139, 163, 10359, 86615, 193446, 236542, 6186099, 36151186, ... (OEIS A224826).
-constant primes occur at 1, 3, 40, 185, 1038, 22610, 179849, ... (A065815) decimal digits.
The starting positions of the first occurrence of
, 1, 2, ... in the decimal expansion of
(excluding the initial 0 to the left of the decimal point) are 11, 5, 4, 14, 9, 1, 7, 2, 16, 10, ... (OEIS A229192).
Scanning the decimal expansion of
until all
-digit numbers have occurred, the last 1-, 2-, ... digit numbers appearing are 8, 18, 346, 2778, 84514, ... (OEIS A000000), which end at digits 16, 658, 6600, 91101, 1384372, ... (OEIS A000000).
It is not known if
is normal, but the following table giving the counts of digits in the first
terms shows that the decimal digits are very uniformly distributed up to at least
.
| OEIS | 10 | 100 | ||||||||
| 0 | A000000 | 0 | 11 | 111 | 1004 | 10065 | 100150 | 999853 | 10001768 | 99998397 |
| 1 | A000000 | 1 | 6 | 95 | 1006 | 9974 | 100143 | 1000601 | 9996653 | 100002318 |
| 2 | A000000 | 1 | 10 | 97 | 967 | 9821 | 99796 | 998927 | 9998112 | 99986624 |
| 3 | A000000 | 0 | 9 | 108 | 976 | 9973 | 100194 | 1000766 | 9999460 | 99984204 |
| 4 | A000000 | 1 | 10 | 90 | 1014 | 9870 | 99783 | 1001444 | 10007542 | 100011681 |
| 5 | A000000 | 2 | 9 | 99 | 980 | 10200 | 100110 | 1002104 | 10001985 | 99996372 |
| 6 | A000000 | 2 | 14 | 90 | 988 | 10103 | 100170 | 999530 | 9996871 | 100014127 |
| 7 | A000000 | 2 | 13 | 116 | 1014 | 9877 | 99682 | 998692 | 9997487 | 99988819 |
| 8 | A000000 | 0 | 7 | 81 | 1033 | 10114 | 100135 | 998534 | 9998182 | 100006202 |
| 9 | A000000 | 1 | 11 | 113 | 1018 | 10003 | 99837 | 999549 | 10001940 | 100011256 |
REFERENCES:
Bailey, D. H. "Numerical Results on the Transcendence of Constants Involving
,
, and Euler's Constant." Math. Comput. 50, 275-281, 1988.
Havil, J. Gamma: Exploring Euler's Constant. Princeton, NJ: Princeton University Press, 2003.
Mascheroni, L. Adnotationes ad calculum integralem Euleri, Vol. 1 and 2. Ticino, Italy, 1790 and 1792. Reprinted in Euler, L. Leonhardi Euleri Opera Omnia, Ser. 1, Vol. 12. Leipzig, Germany: Teubner, pp. 415-542, 1915.
Sloane, N. J. A. Sequences A001620/M3755, A065815, A224826, and A229192 in "The On-Line Encyclopedia of Integer Sequences."
Yee, A. J. "Euler's Constant-116 Million Digits on a Laptop: New World Record." 2006. http://www.numberworld.org/euler116m.html.
Yee, A. J. "y-cruncher - A Multi-Threaded Pi-Program." http://www.numberworld.org/y-cruncher/.
United Press International. "Student at Northwestern Breaks Math Record." Apr. 9, 2007. http://www.upi.com/NewsTrack/Quirks/2007/04/09/student_at_northwestern_breaks_math_record/.
الاكثر قراءة في نظرية الاعداد
اخر الاخبار
اخبار العتبة العباسية المقدسة
الآخبار الصحية

قسم الشؤون الفكرية يصدر كتاباً يوثق تاريخ السدانة في العتبة العباسية المقدسة
"المهمة".. إصدار قصصي يوثّق القصص الفائزة في مسابقة فتوى الدفاع المقدسة للقصة القصيرة
(نوافذ).. إصدار أدبي يوثق القصص الفائزة في مسابقة الإمام العسكري (عليه السلام)