

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي


الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية


الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق


الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات


الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل


المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات


التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات


علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان
Dirichlet L-Series
المؤلف:
Apostol, T. M
المصدر:
Introduction to Analytic Number Theory. New York: Springer-Verlag, 1976.
الجزء والصفحة:
...
19-12-2019
1607
Dirichlet L-Series
A Dirichlet
-series is a series of the form
![]() |
(1) |
where the number theoretic character
is an integer function with period
, are called Dirichlet
-series. These series are very important in additive number theory (they were used, for instance, to prove Dirichlet's theorem), and have a close connection with modular forms. Dirichlet
-series can be written as sums of Lerch transcendents with
a power of
.
Dirichlet
-series is implemented in the Wolfram Language as DirichletL[k, j, s] for the Dirichlet character
with modulus
and index
.
The generalized Riemann hypothesis conjectures that neither the Riemann zeta function nor any Dirichlet
-series has a zero with real part larger than 1/2.
The Dirichlet lambda function
![]() |
![]() |
![]() |
(2) |
![]() |
![]() |
![]() |
(3) |
Dirichlet beta function
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
and Riemann zeta function
![]() |
![]() |
![]() |
(6) |
![]() |
![]() |
![]() |
(7) |
are all Dirichlet
-series (Borwein and Borwein 1987, p. 289).
Hecke (1936) found a remarkable connection between each modular form with Fourier series
![]() |
(8) |
and the Dirichlet
-series
![]() |
(9) |
This Dirichlet series converges absolutely for
(if
is a cusp form) and
if
is not a cusp form. In particular, if the coefficients
satisfy the multiplicative property
![]() |
(10) |
then the Dirichlet
-series will have a representation of the form
![]() |
(11) |
which is absolutely convergent with the Dirichlet series (Apostol 1997, pp. 136-137). In addition, let
be an even integer, then
can be analytically continued beyond the line
such that
1. If
, then
is an entire function of
,
2. If
,
is analytic for all
except a single simple pole at
with complex residue
![]() |
(12) |
where
is the gamma function, and
3.
satisfies
![]() |
(13) |
(Apostol 1997, p. 137).
The number theoretic character
is called primitive if the j-conductor
. Otherwise,
is imprimitive. A primitive
-series modulo
is then defined as one for which
is primitive. All imprimitive
-series can be expressed in terms of primitive
-series.
Let
or
, where
are distinct odd primes. Then there are three possible types of primitive
-series with real coefficients. The requirement of real coefficients restricts the number theoretic character to
for all
and
. The three type are then
1. If
(e.g.,
, 3, 5, ...) or
(e.g.,
, 12, 20, ...), there is exactly one primitive
-series.
2. If
(e.g.,
, 24, ...), there are two primitive
-series.
3. If
, or
where
(e.g.,
, 6, 9, ...), there are no primitive
-series
(Zucker and Robertson 1976). All primitive
-series are algebraically independent and divide into two types according to
![]() |
(14) |
Primitive
-series of these types are denoted
. For a primitive
-series with real number theoretic character, if
, then
|
(15) |
If
, then
|
(16) |
and if
, then there is a primitive function of each type (Zucker and Robertson 1976).
The first few primitive negative
-series are
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
, ... (OEIS A003657), corresponding to the negated discriminants of imaginary quadratic fields. The first few primitive positive
-series are
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
, ... (OEIS A003658).
The Kronecker symbol
is a real number theoretic character modulo
, and is in fact essentially the only type of real primitive number theoretic character mod
(Ayoub 1963). Therefore,
![]() |
(17) |
where
is the Kronecker symbol (Borwein and Borwein 1987, p. 293).
For primitive values of
, the Kronecker symbols are periodic with period
, so
can be written in the form of
sums, each of which can be expressed in terms of the polygamma function
, giving
![]() |
(18) |
The functional equations for
are
![]() |
![]() |
![]() |
(19) |
![]() |
![]() |
![]() |
(20) |
(Borwein and Borwein 1986, p. 303).
For
a positive integer
![]() |
![]() |
![]() |
(21) |
![]() |
![]() |
![]() |
(22) |
![]() |
![]() |
![]() |
(23) |
![]() |
![]() |
![]() |
(24) |
![]() |
![]() |
![]() |
(25) |
![]() |
![]() |
![]() |
(26) |
where
and
are rational numbers. Nothing general appears to be known about
or
, although it is possible to express all
in terms of known transcendentals (Zucker and Robertson 1976).
can be expressed in terms of transcendentals by
![]() |
(27) |
where
is the class number and
is the Dirichlet structure constant.
No general forms are known for
and
in terms of known transcendentals. Edwards (2000) gives several examples of special cases of
. A number of primitive series
are given by
![]() |
![]() |
![]() |
(28) |
![]() |
![]() |
![]() |
(29) |
![]() |
![]() |
![]() |
(30) |
![]() |
![]() |
![]() |
(31) |
![]() |
![]() |
![]() |
(32) |
![]() |
![]() |
![]() |
(33) |
![]() |
![]() |
![]() |
(34) |
![]() |
![]() |
![]() |
(35) |
![]() |
![]() |
![]() |
(36) |
![]() |
![]() |
![]() |
(37) |
![]() |
![]() |
![]() |
(38) |
![]() |
![]() |
![]() |
(39) |
![]() |
![]() |
![]() |
(40) |
![]() |
![]() |
![]() |
(41) |
and for
are given by
![]() |
![]() |
![]() |
(42) |
![]() |
![]() |
![]() |
(43) |
![]() |
![]() |
![]() |
(44) |
![]() |
![]() |
![]() |
(45) |
![]() |
![]() |
![]() |
(46) |
![]() |
![]() |
![]() |
(47) |
![]() |
![]() |
![]() |
(48) |
![]() |
![]() |
![]() |
(49) |
![]() |
![]() |
![]() |
(50) |
![]() |
![]() |
![]() |
(51) |
![]() |
![]() |
![]() |
(52) |
where
is Catalan's constant,
is the trigamma function, and
is the dilogarithm.
Bailey and Borwein (Bailey and Borwein 2005; Bailey et al. 2006a, pp. 5 and 62; Bailey et al. 2006b; Bailey and Borwein 2008; Coffey 2008) conjectured the relation actually in effect proved by Zagier (1986) nearly twenty years earlier (M. Coffey, pers. comm., Mar. 30, 2009) that
is also given by
![]() |
![]() |
![]() |
(53) |
![]() |
![]() |
(54) |
|
![]() |
![]() |
(55) |
|
![]() |
![]() |
![]() |
(56) |
![]() |
![]() |
![]() |
(57) |
where the latter expressions are due to Coffey (2008ab), with
![]() |
![]() |
![]() |
(58) |
![]() |
![]() |
![]() |
(59) |
![]() |
![]() |
![]() |
(60) |
![]() |
![]() |
![]() |
(61) |
![]() |
![]() |
![]() |
(62) |
REFERENCES:
Apostol, T. M. Introduction to Analytic Number Theory. New York: Springer-Verlag, 1976.
Apostol, T. M. "Modular Forms and Dirichlet Series" and "Equivalence of Ordinary Dirichlet Series." §6.16 and §8.8 in Modular Functions and Dirichlet Series in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 136-137 and 174-176, 1997.
Ayoub, R. G. An Introduction to the Analytic Theory of Numbers. Providence, RI: Amer. Math. Soc., 1963.
Bailey, D. H. and Borwein, J. M. "Experimental Mathematics: Examples, Methods, and Implications." Not. Amer. Math. Soc. 52, 502-514, 2005.
Bailey, D. H. and Borwein, J. M. "Computer-Assisted Discovery and Proof." In Tapas in Experimental Mathematics (Ed. T. Amdeberhan and V. Moll). Providence, RI: Amer. Math. Soc., 2008.
Bailey, D. H.; Borwein, J. M.; Calkin, N. J.; Girgensohn, R.; Luke, D. R.; and Moll, V. H. Experimental Mathematics in Action. Wellesley, MA: A K Peters, p. 222, 2006a. http://crd.lbl.gov/~dhbailey/expmath/maa-course/hyper-ema.pdf.
Bailey, D. H.; Borwein, J. M.; Kapoor, V.; and Weisstein, E. W. "Ten Problems in Experimental Mathematics." Amer. Math. Monthly 113, 481-509, 2006b.
Borwein, J. M. and Borwein, P. B. Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity. New York: Wiley, 1987.
Buell, D. A. "Small Class Numbers and Extreme Values of
-Functions of Quadratic Fields." Math. Comput. 139, 786-796, 1977.
Coffey, M. W. "Evaluation of a ln tan Integral Arising in Quantum Field Theory." J. Math. Phys. 49, 093508-1-15, 2008a.
Coffey, M. W. "Alternative Evaluation of a ln tan Integral Arising in Quantum Field Theory." Nov. 15, 2008b. http://arxiv.org/abs/0810.5077.
Edwards, H. M. Fermat's Last Theorem : A Genetic Introduction to Algebraic Number Theory. New York: Springer-Verlag, 2000.
Hecke, E. "Über die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichung." Math. Ann. 112, 664-699, 1936.
Ireland, K. and Rosen, M. "Dirichlet
-Functions." Ch. 16 in A Classical Introduction to Modern Number Theory, 2nd ed. New York: Springer-Verlag, pp. 249-268, 1990.
Koch, H. "L-Series." Ch. 7 in Number Theory: Algebraic Numbers and Functions. Providence, RI: Amer. Math. Soc., pp. 203-258, 2000.
Shanks, D. and Wrench, J. W. Jr. "The Calculation of Certain Dirichlet Series." Math. Comput. 17, 135-154, 1963.
Shanks, D. and Wrench, J. W. Jr. "Corrigendum to 'The Calculation of Certain Dirichlet Series.' " Math. Comput. 17, 488, 1963.
Sloane, N. J. A. Sequences A003657/M2332, A003658/M3776, and A103133 in "The On-Line Encyclopedia of Integer Sequences."
Zagier, D. "Hyperbolic Manifolds and Special Values of Dedekind Zeta-Functions." Invent. Math. 83, 285-301, 1986.
Zucker, I. J. and Robertson, M. M. "Some Properties of Dirichlet
-Series." J. Phys. A: Math. Gen. 9, 1207-1214, 1976.
الاكثر قراءة في نظرية الاعداد
اخر الاخبار
اخبار العتبة العباسية المقدسة
الآخبار الصحية


































































































![1/(64)[psi_1(1/8)+psi_1(3/8)-psi_1(5/8)-psi_1(7/8)]](http://mathworld.wolfram.com/images/equations/DirichletL-Series/Inline242.gif)








![1/9[psi_1(1/3)-psi_1(2/3)]](http://mathworld.wolfram.com/images/equations/DirichletL-Series/Inline251.gif)






























![4/(7sqrt(7))[3Cl_2(theta_7)-3Cl_2(2theta_7)+Cl_2(3theta_7)]](http://mathworld.wolfram.com/images/equations/DirichletL-Series/Inline288.gif)


















قسم الشؤون الفكرية يصدر كتاباً يوثق تاريخ السدانة في العتبة العباسية المقدسة
"المهمة".. إصدار قصصي يوثّق القصص الفائزة في مسابقة فتوى الدفاع المقدسة للقصة القصيرة
(نوافذ).. إصدار أدبي يوثق القصص الفائزة في مسابقة الإمام العسكري (عليه السلام)