1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية الاعداد :

Cyclic Number

المؤلف:  Gardner, M.

المصدر: 

الجزء والصفحة:  ...

23-11-2019

2070

Cyclic Number

A cyclic number is an (n-1)-digit integer that, when multiplied by 1, 2, 3, ..., n-1, produces the same digits in a different order. Cyclic numbers are generated by the full reptend primes, i.e., 7, 17, 19, 23, 29, 47, 59, 61, 97, ... (OEIS A001913).

 

The decimal expansions giving the first few cyclic numbers are

 

1/7 = 0.142857^_

(1)

1/(17) = 0.0588235294117647^_

(2)

1/(19) = 0.052631578947368421^_

(3)

1/(23) = 0.0434782608695652173913^_

(4)

(OEIS A004042).

CyclicNumberFraction

The numbers of cyclic numbers <=10^n for n=0, 1, 2, ... are 0, 1, 9, 60, 467, 3617, 25883, 248881, 2165288, 19016617, 170169241, ... (OEIS A086018). It has been conjectured, but not yet proven, that an infinite number of cyclic numbers exist. In fact, the fraction of cyclic numbers out of all primes has been conjectured to be Artin's constant C=0.3739558136.... The fraction of cyclic numbers among primes <=10^(10) is 0.3739551.

When a cyclic number is multiplied by its generator, the result is a string of 9s. This is a special case of Midy's theorem.

See Yates (1973) for a table of prime period lengths for primes <1370471.


REFERENCES:

Gardner, M. "Cyclic Numbers." Ch. 10 in Mathematical Circus: More Puzzles, Games, Paradoxes and Other Mathematical Entertainments from Scientific American. New York: Knopf, pp. 111-122, 1979.

Guttman, S. "On Cyclic Numbers." Amer. Math. Monthly 44, 159-166, 1934.

Kraitchik, M. "Cyclic Numbers." §3.7 in Mathematical Recreations. New York: W. W. Norton, pp. 75-76, 1942.

Rao, K. S. "A Note on the Recurring Period of the Reciprocal of an Odd Number." Amer. Math. Monthly 62, 484-487, 1955.

Rivera, C. "Problems & Puzzles: Puzzle 012-Period Length of 1/p." http://www.primepuzzles.net/puzzles/puzz_012.htm.

Sloane, N. J. A. Sequences A001913/M4353, A004042, and A086018 in "The On-Line Encyclopedia of Integer Sequences."

Yates, S. Primes with Given Period Length. Trondheim, Norway: Universitetsforlaget, 1973.

EN

تصفح الموقع بالشكل العمودي