تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Base
المؤلف:
Allouche, J.-P. and Shallit, J.
المصدر:
"Representations in Negative Bases." §3.7 in Automatic Sequences: Theory, Applications, Generalizations. Cambridge, England: Cambridge University Press
الجزء والصفحة:
...
22-11-2019
2073
The word "base" in mathematics is used to refer to a particular mathematical object that is used as a building block. The most common uses are the related concepts of the number system whose digits are used to represent numbers and the number system in which logarithms are defined. It can also be used to refer to the bottom edge or surface of a geometric figure.
A real number can be represented using any integer number
as a base (sometimes also called a radix or scale). The choice of a base yields to a representation of numbers known as a number system. In base
, the digits 0, 1, ...,
are used (where, by convention, for bases larger than 10, the symbols A, B, C, ... are generally used as symbols representing the decimal numbers 10, 11, 12, ...).
The digits of a number in base
(for integer
) can be obtained in the Wolfram Language using IntegerDigits[x, b].
Let the base representation of a number
be written
![]() |
(1) |
(e.g., ). Then, for example, the number 10 is written in various bases as
![]() |
![]() |
![]() |
(2) |
![]() |
![]() |
![]() |
(3) |
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
![]() |
![]() |
![]() |
(7) |
![]() |
![]() |
![]() |
(8) |
![]() |
![]() |
![]() |
(9) |
![]() |
![]() |
![]() |
(10) |
![]() |
![]() |
![]() |
(11) |
since, for example,
![]() |
![]() |
![]() |
(12) |
![]() |
![]() |
![]() |
(13) |
![]() |
![]() |
![]() |
(14) |
and so on.
Common bases are given special names based on the value of , as summarized in the following table. The most common bases are binary and hexadecimal (used by computers) and decimal (used by people).
base | number system |
2 | binary |
3 | ternary |
4 | quaternary |
5 | quinary |
6 | senary |
7 | septenary |
8 | octal |
9 | nonary |
10 | decimal |
11 | undenary |
12 | duodecimal |
16 | hexadecimal |
20 | vigesimal |
60 | sexagesimal |
The index of the leading digit needed to represent the number is
![]() |
(15) |
where is the floor function. Now, recursively compute the successive digits
![]() |
(16) |
where and
![]() |
(17) |
for ,
, ..., 1, 0, .... This gives the base
representation of
. Note that if
is an integer, then
need only run through 0, and that if
has a fractional part, then the expansion may or may not terminate. For example, the hexadecimal representation of 0.1 (which terminates in decimal notation) is the infinite expression
.
Some number systems use a mixture of bases for counting. Examples include the Mayan calendar and the old British monetary system (in which ha'pennies, pennies, threepence, sixpence, shillings, half crowns, pounds, and guineas corresponded to units of 1/2, 1, 3, 6, 12, 30, 240, and 252, respectively).
Bergman (1957/58) considered an irrational base, and Knuth (1998) considered transcendental bases. This leads to some rather unfamiliar results, such as equating to 1 in "base
,"
. Even more unexpectedly, the representation of a given integer in an irrational base may be nonunique, for example
![]() |
![]() |
![]() |
(18) |
![]() |
![]() |
![]() |
(19) |
where is the golden ratio.
It is also possible to consider negative bases such as negabinary and negadecimal (e.g., Allouche and Shallit 2003). The digits in a negative base may be obtained with the Wolfram Language code
NegativeIntegerDigits[0, n_Integer?Negative] := {0}
NegativeIntegerDigits[i_, n_Integer?Negative] :=
Rest @ Reverse @ Mod[
NestWhileList[(# - Mod[#, -n])/n& ,
i, # != 0& ],
-n]
The base of a logarithm is a number used to define the number system in which the logarithm is computed. In general, the logarithm of a number
in base
is written
. The symbol
is an abbreviation regrettably used both for the common logarithm
(by engineers and physicists and indicated on pocket calculators) and for the natural logarithm
(by mathematicians).
denotes the natural logarithm
(as used by engineers and physicists and indicated on pocket calculators), and
denotes
. In this work, the notations
and
are used.
To convert between logarithms in different bases, the formula
![]() |
(20) |
can be used.
REFERENCES:
Allouche, J.-P. and Shallit, J. "Representations in Negative Bases." §3.7 in Automatic Sequences: Theory, Applications, Generalizations. Cambridge, England: Cambridge University Press, pp. 103-105, 2003.
Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, p. 28, 1972.
Bergman, G. "A Number System with an Irrational Base." Math. Mag. 31, 98-110, 1957/58.
Bogomolny, A. "Base Converter." http://www.cut-the-knot.org/binary.shtml.
Knuth, D. E. "Positional Number Systems." §4.1 in The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, 3rd ed. Reading, MA: Addison-Wesley, pp. 195-213, 1998.
Lauwerier, H. Fractals: Endlessly Repeated Geometric Figures. Princeton, NJ: Princeton University Press, pp. 6-11, 1991.