تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Symmetric Polynomial
المؤلف:
Borwein, P. and Erdélyi, T
المصدر:
Polynomials and Polynomial Inequalities. New York: Springer-Verlag
الجزء والصفحة:
...
23-2-2019
1011
A symmetric polynomial on variables
, ...,
(also called a totally symmetric polynomial) is a function that is unchanged by any permutation of its variables. In other words, the symmetric polynomials satisfy
![]() |
(1) |
where and
being an arbitrary permutation of the indices 1, 2, ...,
.
For fixed , the set of all symmetric polynomials in
variables forms an algebra of dimension
. The coefficients of a univariate polynomial
of degree
are algebraically independent symmetric polynomials in the roots of
, and thus form a basis for the set of all such symmetric polynomials.
There are four common homogeneous bases for the symmetric polynomials, each of which is indexed by a partition (Dumitriu et al. 2004). Letting
be the length of
, the elementary functions
, complete homogeneous functions
, and power-sum functions
are defined for
by
![]() |
![]() |
![]() |
(2) |
![]() |
![]() |
![]() |
(3) |
![]() |
![]() |
![]() |
(4) |
and for by
![]() |
(5) |
where is one of
,
or
. In addition, the monomial functions
are defined as
![]() |
(6) |
where is the set of permutations giving distinct terms in the sum and
is considered to be infinite.
As several different abbreviations and conventions are in common use, care must be taken when determining which symmetric polynomial is in use.
The elementary symmetric polynomials (sometimes denoted
or
) on
variables
{x_1,...,x_n}" src="http://mathworld.wolfram.com/images/equations/SymmetricPolynomial/Inline41.gif" style="height:14px; width:66px" /> are defined by
![]() |
![]() |
![]() |
(7) |
![]() |
![]() |
![]() |
(8) |
![]() |
![]() |
![]() |
(9) |
![]() |
![]() |
![]() |
(10) |
![]() |
![]() |
![]() |
(11) |
![]() |
![]() |
![]() |
(12) |
The th elementary symmetric polynomial is implemented in the Wolfram Language as SymmetricPolynomial[k,
{" src="http://mathworld.wolfram.com/images/equations/SymmetricPolynomial/Inline61.gif" style="height:14px; width:5px" />x1, ..., xn
}" src="http://mathworld.wolfram.com/images/equations/SymmetricPolynomial/Inline62.gif" style="height:14px; width:5px" />]. SymmetricReduction[f,
{" src="http://mathworld.wolfram.com/images/equations/SymmetricPolynomial/Inline63.gif" style="height:14px; width:5px" />x1, ..., xn
}" src="http://mathworld.wolfram.com/images/equations/SymmetricPolynomial/Inline64.gif" style="height:14px; width:5px" />] gives a pair of polynomials
{p,q}" src="http://mathworld.wolfram.com/images/equations/SymmetricPolynomial/Inline65.gif" style="height:14px; width:33px" /> in
, ...,
where
is the symmetric part and
is the remainder.
Alternatively, can be defined as the coefficient of
in the generating function
![]() |
(13) |
For example, on four variables , ...,
, the elementary symmetric polynomials are
![]() |
![]() |
![]() |
(14) |
![]() |
![]() |
![]() |
(15) |
![]() |
![]() |
![]() |
(16) |
![]() |
![]() |
![]() |
(17) |
The power sum is defined by
![]() |
(18) |
The relationship between and
, ...,
is given by the so-called Newton-Girard formulas. The related function
with arguments given by the elementary symmetric polynomials (not
) is defined by
![]() |
![]() |
![]() |
(19) |
![]() |
![]() |
![]() |
(20) |
It turns out that is given by the coefficients of the generating function
![]() |
(21) |
so the first few values are
![]() |
![]() |
![]() |
(22) |
![]() |
![]() |
![]() |
(23) |
![]() |
![]() |
![]() |
(24) |
![]() |
![]() |
![]() |
(25) |
In general, can be computed from the determinant
![]() |
(26) |
(Littlewood 1958, Cadogan 1971). In particular,
![]() |
![]() |
![]() |
(27) |
![]() |
![]() |
![]() |
(28) |
![]() |
![]() |
![]() |
(29) |
![]() |
![]() |
![]() |
(30) |
(Schroeppel 1972), as can be verified by plugging in and multiplying through.
REFERENCES:
Borwein, P. and Erdélyi, T. Polynomials and Polynomial Inequalities. New York: Springer-Verlag, p. 5, 1995.
Cadogan, C. C. "The Möbius Function and Connected Graphs." J. Combin. Th. B 11, 193-200, 1971.
Dumitriu, I.; Edelman, A.; and Shuman, G. "MOPS: Multivariate Orthogonal Polynomials (Symbolically)." Preprint. March 26, 2004.
Littlewood, J. E. A University Algebra, 2nd ed. London: Heinemann, 1958.
Schroeppel, R. Item 6 in Beeler, M.; Gosper, R. W.; and Schroeppel, R. HAKMEM. Cambridge, MA: MIT Artificial Intelligence Laboratory, Memo AIM-239, p. 4, Feb. 1972. http://www.inwap.com/pdp10/hbaker/hakmem/geometry.html#item6.
Séroul, R. "Newton-Girard Formulas." §10.12 in Programming for Mathematicians. Berlin: Springer-Verlag, pp. 278-279, 2000.