Read More
Date: 14-8-2018
![]()
Date: 30-3-2019
![]()
Date: 10-6-2019
![]() |
A modified spherical Bessel function of the first kind (Abramowitz and Stegun 1972), also called a "spherical modified Bessel function of the first kind" (Arfken 1985), is the first solution to the modified spherical Bessel differential equation, given by
![]() |
(1) |
where is a modified Bessel function of the first kind (Arfken 1985, p. 633).
For positive , the first few values for small nonnegative integer indices are
![]() |
![]() |
![]() |
(2) |
![]() |
![]() |
![]() |
(3) |
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
(OEIS A094674 and A094675).
Writing
![]() |
(7) |
the are given by the recurrence equation
![]() |
(8) |
together with
![]() |
![]() |
![]() |
(9) |
![]() |
![]() |
![]() |
(10) |
(Abramowitz and Stegun 1972, p. 443).
The parity of is
(Arfken 1985, p. 633).
is related to the spherical Bessel function of the first kind
by
![]() |
(11) |
for and integer
(Arfken 1985, p. 633).
They also satisfy the differential identities
![]() |
![]() |
![]() |
(12) |
![]() |
![]() |
![]() |
(13) |
and the recurrence relations
![]() |
![]() |
![]() |
(14) |
![]() |
![]() |
![]() |
(15) |
(Arfken 1985, p. 634).
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). "Modified Spherical Bessel Functions." §10.2 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 443-445, 1972.
Arfken, G. Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 633-634, 1985.
Sloane, N. J. A. Sequences A094674 and A094675 in "The On-Line Encyclopedia of Integer Sequences."
|
|
استنساخ ذئاب عملاقة وشرسة "انقرضت منذ آلاف السنين"
|
|
|
|
|
أصواتٌ قرآنية واعدة .. أكثر من 80 برعماً يشارك في المحفل القرآني الرمضاني بالصحن الحيدري الشريف
|
|
|