النبات
مواضيع عامة في علم النبات
الجذور - السيقان - الأوراق
النباتات الوعائية واللاوعائية
البذور (مغطاة البذور - عاريات البذور)
الطحالب
النباتات الطبية
الحيوان
مواضيع عامة في علم الحيوان
علم التشريح
التنوع الإحيائي
البايلوجيا الخلوية
الأحياء المجهرية
البكتيريا
الفطريات
الطفيليات
الفايروسات
علم الأمراض
الاورام
الامراض الوراثية
الامراض المناعية
الامراض المدارية
اضطرابات الدورة الدموية
مواضيع عامة في علم الامراض
الحشرات
التقانة الإحيائية
مواضيع عامة في التقانة الإحيائية
التقنية الحيوية المكروبية
التقنية الحيوية والميكروبات
الفعاليات الحيوية
وراثة الاحياء المجهرية
تصنيف الاحياء المجهرية
الاحياء المجهرية في الطبيعة
أيض الاجهاد
التقنية الحيوية والبيئة
التقنية الحيوية والطب
التقنية الحيوية والزراعة
التقنية الحيوية والصناعة
التقنية الحيوية والطاقة
البحار والطحالب الصغيرة
عزل البروتين
هندسة الجينات
التقنية الحياتية النانوية
مفاهيم التقنية الحيوية النانوية
التراكيب النانوية والمجاهر المستخدمة في رؤيتها
تصنيع وتخليق المواد النانوية
تطبيقات التقنية النانوية والحيوية النانوية
الرقائق والمتحسسات الحيوية
المصفوفات المجهرية وحاسوب الدنا
اللقاحات
البيئة والتلوث
علم الأجنة
اعضاء التكاثر وتشكل الاعراس
الاخصاب
التشطر
العصيبة وتشكل الجسيدات
تشكل اللواحق الجنينية
تكون المعيدة وظهور الطبقات الجنينية
مقدمة لعلم الاجنة
الأحياء الجزيئي
مواضيع عامة في الاحياء الجزيئي
علم وظائف الأعضاء
الغدد
مواضيع عامة في الغدد
الغدد الصم و هرموناتها
الجسم تحت السريري
الغدة النخامية
الغدة الكظرية
الغدة التناسلية
الغدة الدرقية والجار الدرقية
الغدة البنكرياسية
الغدة الصنوبرية
مواضيع عامة في علم وظائف الاعضاء
الخلية الحيوانية
الجهاز العصبي
أعضاء الحس
الجهاز العضلي
السوائل الجسمية
الجهاز الدوري والليمف
الجهاز التنفسي
الجهاز الهضمي
الجهاز البولي
المضادات الحيوية
مواضيع عامة في المضادات الحيوية
مضادات البكتيريا
مضادات الفطريات
مضادات الطفيليات
مضادات الفايروسات
علم الخلية
الوراثة
الأحياء العامة
المناعة
التحليلات المرضية
الكيمياء الحيوية
مواضيع متنوعة أخرى
الانزيمات
Decoding the Message
المؤلف:
Robert Schleif
المصدر:
Genetics and Molecular Biology
الجزء والصفحة:
2nd Edition , p188-191
2025-05-18
22
What decodes the messages? Clearly, base pairing between a codon of message and an anticodon of the aminoacyl-tRNA decodes. This is not the complete story however. Since the ribosome pays no attention to the correctness of the tRNA charging, the aminoacyl-tRNA synthetases are just as important in decoding, for it is also essential that the tRNA molecules be charged with the correct amino acid in the first place.
Once the amino acids have been linked to their cognate tRNAs, the process of protein synthesis shifts to the ribosome. The “code” is the correspondence between the triplets of bases in the codons and the amino acids they specify (Table 7.1). In a few exciting years molecular biologists progressed from knowing that there must be a code, to learning that each amino acid is encoded by three bases on the messenger, to actually determining the code. The history and experiments of the time are fascinating and can be found in The Eighth Day of Creation by Horace Freeland Judson.
Table1. The Genetic Code.
In the later stages of solving the code it became apparent that the code possessed certain degeneracies. Of the 64 possible three-base codons, in most cells, 61 are used to specify the 20 amino acids. One to six codons may specify a particular amino acid. As shown in Table 7.1, synonyms generally differ in the third base of the codons. In the third position, U is equivalent to C and, except for methionine and tryptophan, G is equivalent to A.
Under special circumstances likely to reflect early evolutionary history, one of the three codons that code for polypeptide chain termination also codes for the insertion of selenocysteine. The same codon at the end of other genes specifies chain termination. Thus, the context surrounding this codon also determines how it is read. Generally such context effects change only the rates of insertion of amino acids, but not their identity.
With the study of purified tRNAs, several facts became apparent. First, tRNA contains a number of unusual bases, one of which is inosine,
which is occasionally found in the first position of the anticodon. Second, more than one species of tRNA exists for most of the amino acids. Remarkably, however, the different species of tRNA for any amino acid all appear to be charged by the same synthetase. Third, strict Watson-Crick base pairing is not always followed in the third position of the codon (Table 2). Apparently the third base pair of the codon anticodon complex permits a variety of base pairings (Fig. 1). This phenomenon is called wobble. The G-U base pair of alanine tRNA mentioned above is an example of wobble.
Table2. Wobble Base Pairs
Fig1. Structure of the wobble base pairs.
In mitochondria the genetic code might be slightly different from that described above. There the translation machinery appears capable of translating all the codons used with only 22 different species of tRNA. One obstacle to understanding translation in mitochondria is the RNA editing that can occur in these organelles. Because the sequence of mRNA can be changed after its synthesis, we cannot be sure that the sequence of genes as deduced from the DNA is the sequence that actually is translated at the ribosome. Hence deductions about the use or lack of use of particular codons as read from the DNA sequence cannot be made with reliability.